Трансформатор Электрические машины Проводниковые материалы Расчет мостового выпрямителя с фильтром Двухполупериодные выпрямители Туннельный диод Диэлектрик и идеальный проводник


Курс лекций по физике для студентов технических университетов. Расчеты в электрических цепях

Особенности создания инверсной населенности уровней

В полупроводниковых лазерах используется инверсия населенностей, получаемая в полупроводниках с одним или с различными типами проводимости (p-n-переход).

Идеальным было бы состояние (рис. 10.9), когда верхние уровни в области 2 полностью заполнены электронами проводимости а нижние в области 1 полностью свободны от валентных электронов, т. е. полностью заполнены дырками. В этом случае инверсия населенности была бы наибольшей.

Формально полупроводник, в котором большинство уровней в области 2 зоны проводимости занято электронами, а в области 1 валентной зоны — дырками, можно назвать вырожденным одновременно для электронов и дырок, в то время как обычно удается создать либо электронные, либо дырочные вырожденные полупроводники. Предположим, что в такой полупроводник попадает фотон с энергией hv, большей ширины запрещенной зоны ΔW0, но меньшей ΔW— величины, соответствующей границам областей 2 и 1, заполненных электронами и дырками:

  (10.34)

При этом условии будут происходить вынужденные переходы из области 2 в область 1 с испусканием новых фотонов. Если энергия падающего фотона hv>ΔW, то начнется поглощение квантов и возникнут переходы из области 3 валентной зоны, где есть валентные электроны, на свободные уровни области 4 зоны проводимости.

В вырожденном электронном полупроводнике верхняя граница заполненной электронами области 2 в зоне проводимости приблизительно совпадает с уровнем Ферми для электронов WFn, а в вырожденном дырочном нижняя граница заполненной дырками области 1 в валентной зоне — с уровнем Ферми для дырок WFp. Поэтому

  (10.35)

и условие (10.34) для получения вынужденного излучения запишем в виде

. (10.36)

Вынужденное излучение будет появляться при воздействии фотонов с энергией, заключенной в пределах от h×vmax=DW0 до h×vmax = DW0 = WFn - WFp. Такие фотоны всегда есть в полупроводнике вследствие процесса рекомбинации электронов и дырок. Рекомбинационное излучение имеет спонтанный характер, т. е. фотоны распределены хаотически, по времени, направлению и поляризации. «Спонтанные» фотоны вызывают вынужденное излучение, однако для получения самовозбуждения необходимо обеспечить многократное прохождение излучения через среду с инверсией населенности. Достигается это созданием отражающих поверхностей на торцах полупроводникового образца.

Рис. 10.9. Состояние энергетических уровней

В полупроводниковых лазерах можно получить очень большую инверсию населенностей и высокое усиление на единицу длины вследствие высокой концентрации частиц в твердом теле. Поэтому длину образца полупроводника можно уменьшить до долей миллиметра, а требования к величине коэффициента отражения зеркал снизить.

В полупроводниках возможны следующие методы получения инверсии населенностей: инжекция носителей через р—n-переход (инжекционные лазеры), электронная накачка и оптическая накачка. Наибольшее распространение получил метод инжекции носителей.

Полупроводниковый инжекционный лазер на гомопереходе, устройство, применение

Лазером называют квантовый генератор или усилитель электромагнитного излучения оптического диапазона, основанный на использовании вынужденного излучения. Процесс генерации в лазере происходит благодаря усилению в активной среде (веществе с инверсией населенностей уровней) и наличию положительной обратной связи.

а)

б)

Рис. 10.10 Энергетическая диаграмма

В инжекционных лазерах используется p-n-переход, образованный вырожденными полупроводниками с разным типом электропроводности. На рис. 10.10,а показана энергетическая диаграмма такого p-n-перехода в состоянии равновесия, т.е. при отсутствии внешнего напряжения, а следовательно, и тока через переход. Уровни Ферми WFn и WFp в обеих областях совпадают. Приближенно можно считать, что в n-области электроны проводимости располагаются на уровнях между «дном» зоны проводимости Wпр и уровнем Ферми WFn, а в р-области дырки - между «потолком» валентной зоны Wв и уровнем Ферми WFр.

Энергетическая диаграмма для случая, когда к p-n-переходу приложено прямое напряжение u0, показана на рис. 10.10,б. Понижение потенциального барьера на величину U0 увеличивает поток электронов из n-области и поток дырок из р-области через переход. Через p-n-переход потечет ток, и вблизи перехода установится некоторое распределение концентрации неравновесных носителей заряда.

Известно, что при неравновесном состоянии теряет смысл понятие уровня Ферми. Однако для определения полной концентрации носителей в неравновесном состоянии можно воспользоваться прежними формулами, если вместо уровней Ферми ввести квазиуровни Ферми для электронов и дырок. Вдали от перехода (см. рис. 10.10,6), где сохраняется равновесное состояние, применимы обычные уровни Ферми WFn и WFp. В области перехода, где имеются неравновесные носители, существуют два квазиуровня Ферми -для электронов W'Fn и для дырок W'Fр. Обычно предполагают, что в пределах перехода до пересечения линии WFn с границей зоны проводимости величины WFn и W'Fn мало отличаются. Аналогичное предположение делают и для уровней WFp и W'Fp. Далее кривая квазиуровня электронов W'Fn опускается и сливается с уровнем Ферми WFp. Соответственно кривая квазиуровня для дырок W'Fр поднимается и сливается с уровнем Ферми WFn.

В некоторой области перехода с шириной δ одновременно велико число электронов проводимости в группе уровней ΔWпр и дырок в группе уровней ΔWв. Поэтому в области δ распределение носителей зарядов подобно распределению их на рис. 10.10, и в ней можно получить инверсную населенность. В этой области перехода наблюдается наиболее интен-сивная излучательная рекомбинация электронов и дырок, так как скорость рекомбинации пропорциональна произведению концентраций электронов и дырок, а они в рассматриваемой области велики. Рекомбинация электронов и дырок в переходе сопровождается спонтанным излучением с энергией, большей ширины запрещенной зоны hv > δ W0.

С увеличением внешнего напряжения u0 растут концентрации электронов и дырок в области δ перехода и, следовательно, увеличивается инверсия населенностей. При некотором пороговом напряжении (пороговом токе), когда вынужденное излучение, вызванное спонтанным излучением, достаточно для компенсации потерь света в материале полупроводника и в отражающих поверхностях, наступит генерация. Таким образом, p-n-переход при малых токах является источником спонтанного (рекомбинационного) излучения (светодиод), а при токах более порогового - источником когерентного излучения (лазер).

Пороговое значение тока сильно зависит от температуры и концентрации примесей. Понижение температуры облегчает вырождение полупроводника и, следовательно, уменьшает пороговый ток. Лазеры на арсениде галлия на гомопереходе обычно работают при температуре жидкого гелия 4,2 К или жидкого азота 77 К. В настоящее время появились инжекционные лазеры, работающие при комнатной температуре. Экспериментально установлено, что изменение температуры от 4,2 К до комнатной может привести к увеличению плотности порогового тока до 100 раз. При комнатной температуре необходима плотность порогового тока до 105 А/см2.

Широкое распространение получил инжекционный лазер на основе вырожденного арсенида галлия (GaAs), конструкция которого показана на рис. 10.11. Две грани полупроводника перпендикулярны плоскости p-n-перехода и образуют после полировки зеркала резонатора. Две другие грани наклонены к плоскости р-n-перехода, чтобы не создавать в этом направлении условий для самовозбуждения. Размеры сторон полупроводника порядка нескольких десятых долей миллиметра. Излучение выходит из узкой области p-n-перехода перпендикулярно параллельным граням полупроводника.

Излучение инжекционного лазера имеет большую угловую расходимость вследствие дифракционных явлений в резонаторе. Пусть толщина области p-n-перехода, в которой происходит генерация, δ = 1 мкм, а расстояние между зеркалами L = 0,1 мм. Оценки показывают, что для этого примера угловая расходимость составляет 5. . .6°. Однако в другой плоскости (в плоскости p-n-перехода) угловая расходимость значительно меньше (примерно 1°) из-за большего размера области излучения.

Спектр излучения инжекционного лазера зависит от выходной мощности, которая, в свою очередь, определяется плотностью тока через p-n-переход. Когда плотность тока незначительно превышает пороговую плотность тока, имеется только одна мода с шириной линии излучения около 0,05 нм и длиной волны λ = 0,84 мкм, соответствующей ИК-диапазону. С ростом плотности тока число мод увеличивается. Частота генерируемых мод зависит от температуры, так как последняя влияет на коэффициент преломления кристалла и ширину запрещенной зоны. При изменении температуры возможен «перескок» от одной моды к другой. Поэтому долговременная стабильность частоты оказывается гораздо меньше, чем у газовых лазеров. Следует отметить, что излучение инжекционных лазеров поляризовано.

Рис. 10.11. Конструкция инжекционного лазера на основе вырожденного арсенида галлия

Обычно инжекционные лазеры на гомопереходе работают в импульсном режиме, при этом максимальная мощность в импульсе ограничивается перегревом кристалла и зависит от рабочей температуры и длительности импульса. Наибольшая импульсная мощность при температуре жидкого азота в лазерах на GaAs составила 100 Вт при длительности импульсов примерно несколько микросекунд и частоте следования до 10 кГц. Основным достоинством инжекционных лазеров является возможность модуляции излучения изменением напряжения на р-n-переходе.

Коэффициент полезного действия полупроводникового лазера η, определяемый как отношение мощности генерируемого излучения к мощности накачки, в первом приближении может быть определен формулой

где ηвнутр - внутренний квантовый выход рекомбинационного излучения. Он учитывает то, что не все электроны рекомбинируют с излучением кванта света (излучательная рекомбинация), а часть электронов рекомбинирует без излучения кванта света (безызлучательная рекомбинация). Отношение ΔW0/qU0 учитывает то обстоятельство, что энергия полученного кванта света приблизительно равна ширине запрещенной зоны ΔW0, а энергия, которую нужно затратить, чтобы ввести из внешней цепи электрон и дырки, равна qU0. Правильный выбор степени легирования и использование чистых материалов позволяет получить ηвнутр близким к единице, поэтому КПД инжекционных лазеров теоретически должен быть также близким к единице. У реальных лазеров он меньше. Это объясняется следующими причинами. Во-первых, часть электронов, двигающихся в р-n-переходе, вследствие большой длины свободного пробега проходит активную область, не участвуя в создании вынужденного излучения. Во-вторых, генерируемое световое излучение распространяется не только в активной области, но и рядом с ней, где отсутствует инверсия населенностей, и, следовательно, происходит поглощение излучения. Кроме этих причин имеется потеря мощности источника питания, связанная с прохождением тока через области и контакты. Тем не менее у лазеров, изготовленных из арсенида галлия, при охлаждении жидким азотом получен КПД 70...80 %.

Особенностью полупроводниковых лазеров является сильная зависимость от температуры КПД и мощности. Это объясняется рядом причин. Во-первых, с ростом температуры растет доля безызлучательной рекомбинации, что приводит к снижению ηвнутр, во-вторых, снижается разность населенностей уровней.

Полупроводниковые лазеры имеют высокий КПД, малые размеры, возможность легкой модуляции до очень высоких частот. Однако они, как правило, требуют охлаждения, имеют широкий спектр излучения и большой угол расходимости.

Особое место занимают лазеры в области связи. Инжекционные лазеры находят применение в "коротких" открытых линиях связи и в волоконно-оптических линиях.

Лазеры на гетеропереходах, устройство, применение

Ж.И.Алферовым предложены инжекционные лазеры на основе гетеропереходов (гетеролазеры), имеющие высокий КПД. В этих лазерах для создания переходов используются полупроводниковые материалы с различной шириной запрещенной зоны.

Полупроводниковая структура гетеролазеров (рис. 10.12,a) состоит из области GaAs n-типа, узкой области GaAs p-типа и области тройного соединения AlxGа1-xAs p-типа. Активной является средняя область, где создается инверсия населенностей. На границе средней и правой областей образуется потенциальный барьер, который ограничивает длину свободного пробега электронов, инжектированных из левой области, и тем самым повышает эффективность образования вынужденного излучения. Кроме того, одновременно уменьшается поглощение света в правой неактивной области, так как из-за различия в коэффициентах преломления в средней и правой областях (рис. 10.12,б) наблюдается полное внутреннее отражение света на их границе (волноводный эффект) В результате этих процессов удалось при T=300 К понизить плотность порогового тока от 20—100 кА/см2 до 7— 10 кА/см2 и увеличить КПД до 10%.. В нашей стране были разработаны также гетеролазеры с полным внутренним отражением света с обеих сторон от активного слоя, лазеры с двойной гетероструктурой, или ДГС-лазеры. В этих лазерах удалось существенно понизить плотность порогового тока и получить большой КПД, что позволило при комнатной температуре осуществить режим непрерывного излучения, который был ранее возможен только при температуре жидкого азота. В ДГС-лазерах на основе GaAs-GaAlAs при комнатной температуре получена плотность порогового тока менее 1 кА/см2.

Отличительной особенностью гетеролазеров является возможность изготовления лазеров с различной длиной волны излучения изменением концентрации примесного алюминия. Например, изменение последней в пределах от 0 до 30% вызывает изменение длины волны от 0,9 до 0,68 мкм. Другими особенностями гетеролазеров являются высокий КПД, удобство возбуждения, малые габариты.

Крупным достижением лазерной техники последних лет явилось создание гетеролазера с распределенной обратной связью. В таком полупроводниковом лазере торцевые зеркальные поверхности, образующие оптический резонатор, заменены дифракционной решеткой, которая, как известно, на определенных частотах полностью отражает падающее на нее излучение.

Повышения мощности излучения инжекционных лазеров добиваются изготовлением набора (решеток) лазерных диодов. Например, при комнатной температуре получена импульсная мощность от 10 до 1000 Вт при частоте следования импульсов до 1 кГц и длительности импульсов 70...200 нс. При этом число лазерных диодов в решетке колеблется от 10 до 60.

Рис. 10.12. Полупроводниковая структура гетеролазеров

Недостатки полупроводниковых лазеров - невысокая степень когерентности излучения, плохая температурная и радиационная устойчивость и пока еще низкая долговечность. Так, в лабораторных условиях получена долговечность 104 ч, однако в промышленных образцах она на один-два порядка ниже.

Одной из областей применения полупроводниковых лазеров является система оптической связи и обработки информации. Для применения в волоконно-оптических линиях связи разрабатываются полупроводниковые лазеры специальной конструкции для эффективного согласования лазера с волоконной линией. В открытых линиях связи используются обычные полупроводниковые лазеры на гетеропереходах в тройных (GaAlAs) и четверных (GaInAsP) системах. Лазеры работают при комнатной температуре в интервале длин волн от 0,65 до 1,6 мкм.

Необходимо отметить использование лазеров в научных исследованиях. Лазеры применяют в медицине. Применение лазеров в логических элементах позволило создать быстродействующие ЭВМ.


На главную