Электроника полупроводников

ИМПУЛЬСНЫЕ ДИОДЫ


Импульсный полупроводниковый диод имеет малую длительность переходных процессов и предназначен для применения в импульсных режимах работы. Основные назначения импульсных диодов – работа в качестве коммутирующего элемента или для детектирования высокочастотных сигналов. Условия работы импульсных диодов обычно соответствуют высокому уровню инжекции, т.е. относительно большим прямым токам. Поэтому свойства и параметры импульсных диодов определяются переходными процессами. При переключении диода с прямого напряжения на обратное в начальный момент времени через диод идет большой обратный ток, ограниченный в основном сопротивлением базы рис.3,а. С течением времени накопленные в базе неосновные носители заряда рекомбинируют или уходят из базы через p-n-переход, после чего обратный ток уменьшается до своего стационарного значения.

 Одним из основных параметров импульсного диода является время восстановления обратного сопротивления tвос (рис.3). По этому параметру импульсные диоды разделены на шесть групп: более 500 нс, 150÷500, 30÷150, 5÷30, 1÷5 и менее 1 нс.

 При пропускании через диод импульса тока (рис.3, б) в прямом направлении наблюдается выброс напряжения. Это вызвано повышенным падением напряжения, пока не окончится процесс накопления неосновных носителей в базе и не уменьшится сопротивление базы. Это происходит за время установления прямого напряжения диода tуст.

 Значения tвос и tуст зависят от структуры диода, времени жизни неосновных носителей в базе, величины накопленного в базе заряда и величины обратного напряжения.


Одной из первых была разработана конструкция точечного импульсного диода рис.4. В нем p-n-переход образуется путем вплавления иголки индия в кристалл Si n-типа. Полученный p-n-переход имеет полусферическую форму с радиусом а.

Время переходного процесса определяется временем перезаряда емкости p-n-перехода Спер=Сбар+Сдиф через сопротивление базы rб 

Τ = Спер∙rб.

Барьерная емкость точечного p-n-перехода Сбар ~ а2 мала в связи с малой площадью перехода. Особенностью точечных диодов является большое сопротивление базы, которое определяется сопротивлением растекания. Для его расчета определим сопротивление полусферического слоя полупроводника толщиной R на расстоянии dR от центра сферы

.

Если считать удельное сопротивление полупроводника ρ постоянным, то полное сопротивление кристалла полупроводника толщиной b под точечным p-n-переходом

.

 В точечных диодах а=5÷20 мкм, а b~200 мкм, поэтому

.

 Современные импульсные диоды производятся по планарной технологии с использованием кремниевых или арсенид-галлиевых кристаллов. Для ускорения переходных процессов в базе диода создают встроенное электрическое поле за счет неравномерного легирования и вводят примеси меди или золота, уменьшающие время жизни неосновных носителей. Для уменьшения барьерной емкости уменьшают размеры импульсного диода.

Четырехпроводная звезда В четырехпроводной системе при коротком замыкании фазы приемника получаем короткое замыкание фазы источника.

Мощность трехфазных цепей Рассмотрим расчет мощности при соединении приемников по схеме четырехпроводной звезды и допустим, что нагрузка несимметрична.

Фильтры симметричных составляющих Симметричные составляющие несимметричных систем можно определить не только аналитически или графически, но и при помощи электрических схем, называемых фильтрами симметричных составляющих. Эти фильтры применяются в схемах, защищающих электрические установки. Степень асимметрии системы токов и напряжений не должна превосходить известные пределы, т.е. составляющие нулевой и обратной последовательностей системы напряжений и токов при нормальных режимах должны быть меньше некоторых наперед заданных величин, определяемых для каждой конкретной установки индивидуально.

Вращающееся магнитное поле системы трёх катушек Рассмотрим аналогичную систему трёх катушек, оси которых сдвинуты на угол 120°.

ЭДС взаимоиндукции На основании закона электромагнитной индукции изменение магнитного потока катушки вызывает ЭДС самоиндукции, которая при линейности катушки может быть определена следующим образом .

Расчет цепей при наличии взаимной индуктивности Рассмотрение данного вопроса начнём с простейших способов соединения двух индуктивно связанных катушек: параллельного и последовательного. При этом будем использовать комплексный метод расчета.

Расчет разветвлённых цепей при наличии взаимной индуктивности Расчёт разветвлённых цепей при наличии взаимной индуктивности представляется более сложным этапом. Он осуществляется с помощью законов Кирхгофа либо методов контурных токов. Отметим, что метод узловых потенциалов в данном случае не применим, поскольку токи в ветвях определяются не только разностью потенциалов соседних узлов, но и токами других ветвей, с которыми они связаны индуктивно. Пусть имеются три индуктивно связанные катушки, намотанные на общий сердечник, выполненный из немагнитного материала, и подключённые к двум источникам ЭДС

Линейный (воздушный) трансформатор Воздушный трансформатор является классическим примером линейной цепи, имеющей индуктивную связь.

Построим векторную диаграмму трансформатора под нагрузкой

В электроэнергетике вводят понятие практически синусоидальной кривой. Если действующее значение высших гармоник в напряжении промышленной сети не превышает 5% от действующего значения основной частоты, то такое напряжение считается практически синусоидальным.

Модуляция Синусоидальные колебания характеризуются тремя основными параметрами: амплитудой, частотой и начальной фазой. В случае, когда один из этих параметров медленно меняется во времени по некоторому периодическому закону, то говорят об амплитудной, частотной или фазовой модуляции.

Высшие гармоники в трехфазных цепях Рассмотрим процесс поведения высших гармоник в трехфазных системах. При этом будем полагать, что фазные напряжения источника не содержат постоянных составляющих и четных гармоник, т.е. кривые напряжения симметричны относительно оси абсцисс, которые на практике встречаются наиболее часто.

Задача Найти: ток через Е3, используя метод эквивалентных преобразований.

Нарисуем эквивалентную электрическую схему с эквивалентным генератором

Лекции и задачи по физике Примеры решений контрольной работы