Электроника полупроводников

ДИОДЫ ШОТТКИ

 Структура диодов Шоттки показаны на рис.7. В контактах металл-полупроводник ток создается за счет движения основных носителей заряда при любой полярности источника питания. Концентрация электронов в металле на несколько порядков выше, чем в низколегированном полупроводнике n – типа, поэтому уровень инжекции электронов всегда мал, нет накопления избыточного заряда и отсутствует диффузионная емкость. Диод Шоттки обладает хорошими частотными свойствами. Сила тока на прямой ветви ВАХ диода Шоттки экспонециально зависит от приложенного напряжения. На диоде Шоттки прямое падение напряжения составляет ~0.3В, что существенно меньше, чем в кремниевых и арсенид-галлиевых диодах. Для улучшения частотных свойств и повышения обратных напряжений базу диода делают двухслойной. Наличие высоколегированного слоя уменьшает сопротивление базы, а низколегированный слой увеличивает толщину перехода, что с одной стороны уменьшает барьерную емкость, а с другой стороны увеличивает напряжение пробоя. За счет хорошего теплоотвода увеличивается плотность прямого тока J. Таким образом, на основе диода Шоттки могут быть созданы выпрямительные, импульсные и СВЧ диоды.

 


p-i-n-ДИОДЫ

 На рис.8 а, б, в и г представлены структура, зонная диаграмма в состоянии термодинамического равновесия, распределение концентрации примесей и напряженности электрического поля в p-i-n-диоде. В такой структуре полупроводники p и n-типов разделены областью собственного полупроводника. Это существенно уменьшает барьерную емкость диода, которая слабо зависит от приложенного напряжения. Распределение напряженности электрического поля Е имеет трапециевидную форму (рис. 8, г). При одинаковой легированности областей p и n и, соответственно одинаковой контактной разности потенциалов φ0, напряженность электрического поля в p-n-переходе Ep-n=φ0/(dp+dn), а в p-i-n-структуре по абсолютной величине существенно меньше − Ep-i-n=φ0/(dp+di+dn). Поэтому напряжение пробоя p-i-n-структуры существенно превышает напряжение пробоя p-n-перехода.


На основе p-i-n-структур с большой площадью перехода изготавливают высоковольтные выпрямительные диоды, рассчитанные на работу с большими прямыми токами. p-i-n-структуры с малой площадью перехода имеют малую барьерную емкость и используются в качестве переключающих диодов СВЧ диапазона. p-i-n-диоды имеют повышенную по сравнению с p-n-диодами максимальную рассеиваемую мощность. Например, для переключающих бескорпусных СВЧ диодов 2Ф523А-4 (диаметр 2мм, длинна 3.6мм) рассеиваемая в непрерывном режиме мощность составляет до 20Вт. При параллельном включении в СВЧ тракт, переключающий p-i-n-диод работает режиме отражения СВЧ излучения, при этом поглощается незначительная часть падающей на него СВЧ мощности, что позволяет относительно маломощному прибору управлять десятками и сотнями киловатт импульсной СВЧ мощности.

 Недостатком кремниевых p-i-n-диодов является инерционность процесса рассасывания носителей заряда из i-слоя при переключении диода, т.к. скорость движения носителей заряда ограничена. Применение арсенид-галлиевых p-i-n-диодов увеличивает скорость переключения, однако уровень рассеиваемой на диоде мощности значительно ниже, чем у кремниевых p-i-n-диодов.

Содержание задач относится к теме "Выпрямители и включает: 1) составление схемы одно- и двухполупериодного выпрямителей на полупроводниковых вентилях; 2) подбор диодов для таких схем по заданным электрическим параметрам тока, напряжения, мощности. При изучении программного материала темы обратите особое внимание на устройство и работу полупроводниковых, а также на схемы выпрямителей на полупроводниковых вентилях. Рекомендуется также ознакомится с приводимым описанием.

Пример Для питания постоянным током потребителя мощностью Pd = Вт при напряжении Ud = 100 B необходимо собрать схему однополупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2.

Несимметричные и несинусоидальные режимы в трехфазных цепях

Определить активную мощность, потребляемую всеми приемниками в симметричном и несимметричном режимах работы.

Расчет трехфазной несимметричной электрической цепи с двигательной нагрузкой (в исходной схеме выключатель 1S замкнут)

Медоды часчета резистивных цепей Законы Кирхгофа Число независимых уравнений n, составляемых по законам Кирхгофа, равно числу неизвестных.

Порядок расчета методом двух узлов 1) Выбираем положительное направление напряжения между узлами схемы и определяем узловое напряжение по формуле (2), учитывая правило знаков. 2) При выбранных положительных направлениях токов в ветвях определяем их значение из уравнений, составленных по второму закону Кирхгофа для контуров, состоящих из ветви, в которой определяется ток, и найденного напряжения между узлами. 3) Правильность расчета проверяется по первому закону Кирхгофа и составлением уравнений по второму закону Кирхгофа для контуров эквивалентной схемы.

Анализ цепей синусоидального тока Цель данного задания – ознакомить студентов с применением символического метода расчета сложных электрических цепей, основанного на комплексном представлении воздействий цепи и вызываемых ими реакций. Данный метод относится к методам анализа линейных электрических цепей в частотной области и служит для определения реакции цепи в установившихся режимах при гармоническом воздействии.

Пример. В схеме заданы: 1=j110 B, , 5=j80 B, =3 A, X1'= X3=10 Ом, X2=40 Ом, X1"=r4=20 Ом, r6=30 Ом. Определить все токи методом узловых потенциалов и показания вольтметра.

Линейные электрические цепи Физические законы в электротехнике Электромагнитное поле представляет собой особый вид материи. Как вид материи оно обладает массой, энергией, количеством движения, может превращаться в вещество и наоборот.

Метод законов Кирхгофа 1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю (). 2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().

Физические процессы в электрической цепи Электрической цепью называется совокупность технических устройств, образующих пути для замыкания электрических токов и предназначенных для производства, передачи, распределения и потребления электрической энергии. Любая электрическая цепь предполагает наличие в своей структуре как минимум трех элементов, а именно: источников энергии, приемников энергии и соединяющих их проводов или линий электропередачи.

Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2.

Теорема об эквивалентном генераторе Формулировка теоремы: по отношению к выводам выделенной ветви или отдельного элемента остальную часть сложной схемы можно заменить а)эквивалентным генератором напряжения с ЭДС Еэ , равной напряжению холостого хода на выводах выделенной ветви или элемента (Еэ=Uxx) и с внутренним сопротивлением R0, равным входному сопротивлению схемы со стороны выделенной ветви или элемента (R0=RВХ); б)эквивалентным генератором тока с JЭ, равным току короткого замыкания на выводах выделенной ветви или элемента (Jэ=Iкз), и с внутренней проводимостью G0, равной входной проводимости схемы со стороны выделенной ветви или элемента (G0=Gвх).

Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :   а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

Лекции и задачи по физике Примеры решений контрольной работы