Электроника полупроводников

Физика решение задач
Механика
Молекулярная физика и термодинамика
http://kursmt.ru/
Электростатика
Электрический ток
Электромагнетизм
Колебания и волны
Основные законы оптики
Атомная физика
Полупроводники
Ядерная физика
Электроника
http://kursmat.ru/
ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ
ИМПУЛЬСНЫЕ ДИОДЫ
ДИОДЫ С РЕЗКИМ ВОССАНОВЛЕНИЕМ ОБРАТНОГО СОПРОТИВЛЕНИЯ
ДИОДЫ ШОТТКИ
Стабилитроны
ШУМОВЫЕ ДИОДЫ
ОБРАЩЕННЫЕ ДИОДЫ
Электротехника
Методы расчета электрических цепей
Трехфазные нагрузочные цепи
Генератор постоянного тока
Пуск синхронного двигателя
Полупроводниковые выпрямители
Усилители постоянного тока
Ферромагнитные материалы
Вычислить напряженность магнитного поля
Математика
Вычислить несобственный интеграл
Дифференциальные уравнения (ДУ)
Степенные ряды
Неопределенный интеграл
Несобственный интеграл 1-го рода
Исследовать сходимость интеграла
Основные методы интегрирования
Метод интегрирования по частям
Вычисление площадей плоских фигур
Определенный интеграл и его приложения
Однородные уравнения
Условие Липшица

Стабилитроны

Стабилитроном называется полупроводниковый диод, напряжение на котором в области электрического пробоя при обратном включении слабо зависит от тока в заданном диапазоне и который предназначен для стабилизации напряжения.

Стабилитроны работают в режиме электрического пробоя. Под действием сильного поля в области р-n - перехода обратный ток резко возрастает при малых изменениях приложенного напряжения. Эту особенность ВАХ кремниевого диода в области пробоя (рис. 9) используют для стабилизации напряжения, а также фиксации уровней напряжений в схемах, отсюда другое название кремниевых стабилитронов – опорные диоды.

Напряжение пробоя, являющееся напряжением стабилизации, может изменяться в широких пределах – от 3,5 до 400 В и выше в зависимости от удельного сопротивления кремния. На рис. 9 приведена рабочая часть ВАХ стабилитрона с указанием минимального и максимального тока стабилизации.

Основные параметры стабилитронов; напряжение стабилизации Uст, динамическое сопротивление rдин= dUст/dIст, при номинальном токе стабилизации, температурный коэффициент напряжения стабилизации aст = (dUст/dТ) при номинальном токе стабилизации Iст = const.

 Так как реальная ВАХ в области пробоя имеет некоторый наклон, то напряжение стабилизации зависит от тока стабилизации Iст. Максимальный ток стабилизации Iст.мах ограничен допустимой мощностью рассеяния Рмах и возможностью перехода электрического пробоя в тепловой, который является необратимым. Минимальный ток стабилизации Iст.min соответствует началу устойчивого электрического пробоя. При меньших токах в диоде возникают значительные шумы, происхождение которых связано с механизмом лавинного пробоя (шумы в предпробойной области используются в специальных приборах – полупроводниковых генераторах шума). Динамическое сопротивление rдин характеризует качество стабилизации и определяется углом наклона ВАХ в области пробоя (оно возрастает с ростом напряжения стабилизации). Важным параметром стабилитрона является aст. Зависимость aст от напряжения стабилизации Uст приведена на рис.10. Как видно из рисунка, для высоковольтных стабилитронов aст > 0, а для низковольтных aст < 0. Это объясняется зависимостью механизма пробоя от степени легирования полупроводника. Изменение знака ТКН происходит при концентрации примеси в кремнии около 5·1017см-3. При Uст ≈ 8 В коэффициент aст минимальный.

Один из способов уменьшения Uст заключается в последовательном соединении переходов с равными по значению, но противоположными по знаку температурными коэффициентами напряжения стабилизации. Если переход стабилитрона имеет значение aст, равное 6 мВ/К, то при сборке последовательно с ним подсоединяют три р-n - перехода, которые будут работать в прямом направлении, так как для прямого направления температурный коэффициент напряжения диода ТКН= −2 мВ/К. Такие термокомпенсированные стабилитроны с aст = 0,5∙мВ/К и менее применяются в источниках эталонного напряжения.

 Конструкция стабилитронов аналогична конструкции выпрямительных диодов, выбор типа корпуса связан с мощностью рассеяния.

Разновидностью кремниевых стабилитронов являются стабисторы. В этих диодах для стабилизации низких напряжений (до 1 В) используется прямая ветвь ВАХ р-n - перехода. Для изготовления стабисторов используется сильнолегированный кремний, что позволяет получать меньшие значения сопротивления базы диода. Температурный коэффициент стабилизации стабисторов отрицательный и примерно равен –2 мВ/К.

7. Стабисторы


Полупроводниковый стабистор работает на прямой ветви ВАХ (рис.11). Основная часть стабисторов это кремниевые диоды р-n-переходы которых сформированы в высоколегированном низкоомном кремнии. Это сделано для получения меньшего сопротивления базы и соответственно меньшего дифференциального сопротивления  (при прямом смещении). Из-за большой концентрации донорных Nd и акцепторных Na примесей толщина р-n-перехода оказывается малой  и напряжение пробоя −Uпр на обратной ветви ВАХ оказывается тоже малым и, по абсолютному значению, не превышает нескольких вольт.

 Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации, определяемое прямым падением напряжения на диоде, что для кремниевых стабисторов составляет порядка 0.7В.

Электрическая цепь с последовательным соединением элементов R, L и C

Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Магнитносвязанные электрические цепи Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными)

Линейный (без сердечника) трансформатор Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН

Топологические методы расчета электрических цепей

Электрические цепи трехфазного тока. Трехфазная система Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов).

Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN.

Электрические цепи периодического несинусоидального тока Как известно, в электроэнергетике в качестве стандартной формы для токов и напряжений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приводят к дополнительным потерям энергии и снижению их коэффициента полезного действия. Синусоидальность формы кривой напряжения генератора является одним из показателей качества электрической энергии как товара.

Расчет электрических цепей несинусоидального тока Расчет электрических цепей, содержащих источники энергии [источники ЭДС e(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.

Переходные процессы в электрических цепях Определение переходных процессов Установившимся режимом называется такое состояние электрической цепи (схемы), при котором наблюдается равновесие между действием на цепь источников энергии и реакцией элементов цепи на это действие. Различают следующие 4 вида установившихся режимов в цепи

Методы составления характеристического уравнения Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).

Способы составления системы операторных уравнений При расчете переходных процессов операторным методом на практике применяется два способа составления системы операторных уравнений. Сущность 1-го способа состоит в том, что для исходной электрической схемы составляется система дифференциальных уравнений по законам Кирхгофа. Затем каждое слагаемое в этих уравнениях непосредственно подвергается преобразованию Лапласа и таким образом система дифференциальных уравнений преобразуется в соответствующую ей систему операторных уравнений. Составление операторной схемы при этом не требуется.

Анализ переходных процессов в цепи R, L, C Переходные процессы в цепи R, L, C описываются дифференциальным уравнением 2-го порядка. Установившиеся составляющие токов и напряжений определяются видом источника энергии и определяются известными методами расчета установившихся режимов. Наибольший теоретический интерес представляют свободные составляющие, так как характер свободного процесса оказывается существенно различным в зависимости от того, являются ли корни характеристического уравнения вещественными или комплексными сопряженными.

Лекции и задачи по физике Примеры решений контрольной работы