Математическая статистика в экономике

Свойства дисперсии

Приведем здесь основные свойства дисперсии.

Свойство 1. Дисперсия постоянной величины С равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

Свойство 3. Дисперсия суммы независимых случайных величин равна сумме их дисперсий:

Перечисленные свойства дисперсии используются при вычислениях, когда мы имеем дело с несколькими случайными величинами. Из свойств 1 и 3 следует важный вывод: D(X + C) = D(X), где С — постоянная величина. Кроме того, справедлива следующая теорема.

ТЕОРЕМА 2. Дисперсия числа появления события А в п независимых испытаниях с вероятностью появления р в каждом из них этого события вычисляется по формуле

Приведем здесь еще два важных результата: для случайной величины, распределенной по закону Пуассона (18.4), математическое ожидание и дисперсия равны параметру данного распределения.

Пример 7. Найти дисперсию числа выигрышных лотерейных билетов по данным примера 4.

Решение. Имеем 200 независимых испытаний с вероятностью появления выигрышного билета р = 0,015. Стало быть, q = 1 - 0,015 = 0,985, откуда и получаем искомую дисперсию:

Пример 8. Банк выдал ссуды п разным заемщикам в размере S р. каждому под ставку ссудного процента r. Найти математическое ожидание и дисперсию прибыли банка, а также условие на ставку ссудного процента, если вероятность возврата ссуды заемщиком равна р.

Решение. Поскольку заемщики между собой не связаны, то можно полагать, что мы имеем п независимых испытаний. Вероятность утери ссуды для банка в каждом испытании равна q = 1 - р. Пусть Х — число заемщиков, возвративших ссуду с ссудным процентом, тогда прибыль банка определяется формулой

где Х является случайной величиной с биномиальным законом распределения. Тогда, согласно теореме 18.1, математическое ожидание прибыли определяется с использованием формулы (18.7):

Поскольку выдача ссуды имеет смысл лишь при положительном математическом ожидании прибыли (положительная средняя величина прибыли), то из условия М(П) > 0 вытекает условие на ставку ссудного процента:

Дисперсия прибыли банка находится, согласно теореме 18.2, с использованием формулы (18.14) и свойств 1-3:

Среднее квадратическое отклонение

Одной из основных оценок рассеяния возможных значений случайной величины служит среднее квадратическое отклонение.

Определение 4. Средним квадратическим отклонением случайной величины Х (стандартом) называется квадратный корень из ее дисперсии:

Согласно этому определению, из свойства 3 и формулы (18.13) следует, что в случае суммы взаимно независимых случайных величин справедлива формула

Пример 9. Найти дисперсию и среднее квадратическое отклонение случайной величины X, заданной следующим распределением:

Решение. Имеем М(Х) = 2,6. Составим таблицу распределения случайной величины X2:

Отсюда получаем, что М(Х2) = 14,4. По формулам (18.11) и (18.15) окончательно получаем искомые значения D(X) и. σ(Х):

Пример 10. Законы распределения независимых случайных величин Х и Y приведены соответственно в таблицах:

Найти дисперсию и среднее квадратическое отклонение случайной величины Z = 2Х + 3Y.

Решение. Согласно свойствам 2 и 3 дисперсии (формулы (18.12) и (18.13)), имеем

Для вычисления дисперсий D(X) и D(Y) составляем соответствующие таблицы — законы распределения случайных величин Х2 и Y2:

Отсюда получаем

Искомые дисперсия и среднее квадратичное отклонение случайной величины Z равны:

Пример 11. В условиях примера 8 найти математическое ожидание и среднее квадратическое отклонение прибыли при п = 1000, р = 0,8, S = 100 тыс. р. и r = 30%.

Решение. Ставка ссудного процента удовлетворяет условию, чтобы математическое ожидание прибыли было положительным: 30 > 100 (1 - 0,8) / 0,8. Математическое ожидание прибыли:

Среднее квадратическое отклонение прибыли:

Начальные и центральные моменты

Определение 5. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Хk:

В частности,

и тогда формула (18.11) для вычисления дисперсии принимает вид

Определение 6. Центральным моментом порядка k случайной величины Х называется математическое ожидание k-й степени отклонения:

В частности, согласно формуле (18.9), μ1 = 0, а дисперсия случайной величины Х является центральным моментом второго порядка:

Соотношения, связывающие начальные и центральные моменты, также могут быть легко получены. Приведем их здесь для моментов третьего и четвертого порядков (они наряду с моментами первого и второго порядков широко применяются в статистике):

Моменты более высоких порядков применяются крайне редко.

Моменты, рассмотренные в этом разделе, называют теоретическими. В отличие от них моменты, вычисляемые по данным наблюдений в математической статистике, называют эмпирическими.

 Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел. Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.


Модель Леонтьева многоотраслевой экономики