Дифференциальные уравнения

Вычислить несобственный интеграл Дифференциальные уравнения Степенные ряды Неопределенный интеграл Несобственный интеграл Основные методы интегрирования Метод интегрирования по частям

Физика решение задач
Механика
Молекулярная физика и термодинамика
http://kursmt.ru/
Электростатика
Электрический ток
Электромагнетизм
Колебания и волны
Основные законы оптики
Атомная физика
Полупроводники
Ядерная физика
Электроника
http://kursmat.ru/
ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ
ИМПУЛЬСНЫЕ ДИОДЫ
ДИОДЫ С РЕЗКИМ ВОССАНОВЛЕНИЕМ ОБРАТНОГО СОПРОТИВЛЕНИЯ
ДИОДЫ ШОТТКИ
Стабилитроны
ШУМОВЫЕ ДИОДЫ
ОБРАЩЕННЫЕ ДИОДЫ
Электротехника
Методы расчета электрических цепей
Трехфазные нагрузочные цепи
Генератор постоянного тока
Пуск синхронного двигателя
Полупроводниковые выпрямители
Усилители постоянного тока
Ферромагнитные материалы
Вычислить напряженность магнитного поля
Математика
Вычислить несобственный интеграл
Дифференциальные уравнения (ДУ)
Степенные ряды
Неопределенный интеграл
Несобственный интеграл 1-го рода
Исследовать сходимость интеграла
Основные методы интегрирования
Метод интегрирования по частям
Вычисление площадей плоских фигур
Определенный интеграл и его приложения
Однородные уравнения
Условие Липшица

Однородные уравнения.

Определение. Уравнение (1) называется однородным, если  может быть представлена как функция отношения своих аргументов, т.е. . (2)

Таким образом, однородное уравнение имеет вид:  (3)

Теорема. Однородное уравнение (3) имеет общий интеграл:  . (4)

Замечание 1. В доказательстве теоремы мы предполагаем, что . Рассмотрим тот случай, когда . Здесь имеются две возможности.

а)  Тогда   и уравнение (3) принимает вид: .

Это уравнение с разделяющимися переменными  и здесь никаких преобразований делать не нужно.

б) уравнение  удовлетворяется лишь при определенных значениях . В этом случае могут быть потеряны решения . Интегральные кривые суть прямые, проходящие через начало.

Пример. Решить уравнение .

Решение. Уравнение однородное. Полагаем .

Если , то . Отсюда .

 – общий интеграл.

Может быть потеряно решение  или .

Действительно,  есть решение рассматриваемого уравнения и оно не может быть получено из общего интеграла ни при каком значении С, следовательно  есть особое решение.

Замечание 2. Формулу (4) запоминать не следует. Надо уметь ее выводить в каждом конкретном случае, как это сделано в примере.

Замечание 3. Для интегрирования уравнения более общего вида, чем (3) . (6)

(обобщенное однородное) сначала делают замену неизвестной функции и независимой переменной по формулам ; выбирая  и  такими, чтобы исчезли свободные члены в числителе и знаменателе аргумента  в (6), тогда (6) приводится к однородному уравнению.

Дифференциальные уравнения I порядка

Уравнения с разделяющимися переменными. Эти уравнения самые простые. При решении какого-либо уравнения его стараются свести к уравнению с разделяющимися переменными.

Линейные уравнения

На главную