Дифференциальные уравнения

Вычислить несобственный интеграл Дифференциальные уравнения Степенные ряды Неопределенный интеграл Несобственный интеграл Основные методы интегрирования Метод интегрирования по частям

Физика решение задач
Механика
Молекулярная физика и термодинамика
http://kursmt.ru/
Электростатика
Электрический ток
Электромагнетизм
Колебания и волны
Основные законы оптики
Атомная физика
Полупроводники
Ядерная физика
Электроника
http://kursmat.ru/
ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ
ИМПУЛЬСНЫЕ ДИОДЫ
ДИОДЫ С РЕЗКИМ ВОССАНОВЛЕНИЕМ ОБРАТНОГО СОПРОТИВЛЕНИЯ
ДИОДЫ ШОТТКИ
Стабилитроны
ШУМОВЫЕ ДИОДЫ
ОБРАЩЕННЫЕ ДИОДЫ
Электротехника
Методы расчета электрических цепей
Трехфазные нагрузочные цепи
Генератор постоянного тока
Пуск синхронного двигателя
Полупроводниковые выпрямители
Усилители постоянного тока
Ферромагнитные материалы
Вычислить напряженность магнитного поля
Математика
Вычислить несобственный интеграл
Дифференциальные уравнения (ДУ)
Степенные ряды
Неопределенный интеграл
Несобственный интеграл 1-го рода
Исследовать сходимость интеграла
Основные методы интегрирования
Метод интегрирования по частям
Вычисление площадей плоских фигур
Определенный интеграл и его приложения
Однородные уравнения
Условие Липшица

Теорема существования и единственности решения дифференциального уравнения

Условие Липшица

Рассмотрим функцию , определенную и непрерывную в прямоугольнике К:

Определение. Если для любого  и любых двух значений  и  переменной :

, существует такое, не зависящее от х число , что выполнено неравенство:  (1), то говорят, что функция   в области К удовлетворяет условию Липшица с постоянной L.

Замечания:

1. Если  в области К имеет непрерывную частную производную , то всегда найдется такое L, что условие (1) будет выполнено. Действительно, тогда по формуле Лагранжа   (2),

– лежит между   и .

В силу непрерывности  в К и замкнутости области К,  в К ограничена, т.е. , где L – некоторая константа. В этом случае, в частности, за L можно принять .

2. Условие Липшица (1) более слабое, чем существование частной производной , так как оно может быть выполнено и в том случае, когда  существует не всюду в К.

Примеры:

Определить, удовлетворяет ли условию Липшица функция  заданная в прямоугольнике ?


Решение.

Следовательно, за L можно принять  и условие Липшица выполнено. Тот же результат получим, если используем замечание 1. Действительно, функция  имеет непрерывную , поэтому за L можно принять .

Таким образом, заданная функция удовлетворяет условию Липшица в любом конечном прямоугольнике.

То же самое для функции .

Это значит, что в прямоугольнике K условие выполнено с .

Здесь константа L не зависит от размеров прямоугольника, следовательно, условие Липшица удовлетворяется на всей плоскости.

То же для функции

В то же время  не существует при , т.к.

.

Теорема существования и единственности

Теорема (Коши)

Пусть  удовлетворяет условиям:

1) непрерывна в прямоугольнике K: , тогда в K  ограничена, то найдется такое   (3)

удовлетворяет в K условию Липшица

 (4)


Тогда в интервале:   (5)

дифференциальное уравнение  (6)

обладает единственным решением , таким, что .

Замечания:

Для существования решения достаточно непрерывности  в K.

Для единственности решения требуется выполнение условия Липшица (4), которое может быть заменено более жестким условием существования в K непрерывной .

При доказательстве теоремы рассматривается задача Коши: , (7)

которая заменяется эквивалентным ей интегральным уравнением . (8)

Затем к уравнению (8) применяется так называемый метод последовательных приближений Пикара. Он состоит в том, что строится последовательность функций  сходящаяся к решению уравнения (8). Функции  строятся по следующему правилу: за исходное приближение принимается , а следующие вычисляются по формуле: . (9)

Это есть рабочая формула для построения приближенного решения по методу последовательных приближений.

Допустим интегральная кривая построена на интервале . Возьмем конечную точку за центр нового прямоугольника и продолжим решение вправо. Поступая так, каждый раз, можно продолжить решение (интегральную кривую) до самой границы области G задания функции  (в предположении, что G конечна и замкнута).

Мы построили интегральную кривую, проходящую через точку . Можно выбрать любую другую точку и опять получим единственную интегральную кривую. Таким образом, область G как бы состоит из интегральных кривых.

Теорема. Если  определена и непрерывна на всей плоскости и удовлетворяет условию Липшица во всякой конечной области этой плоскости, то всякая интегральная кривая при возрастании или продолжима до  или имеет вертикальную асимптоту при конечном значении , т.е. интегральная кривая не может окончится где-то внутри области.

Пример. .

Здесь  удовлетворяет всем условиям теоремы. Решением задачи Коши  будет . Решение имеет вертикальные асимптоты .

Те точки области G, в которых функция  неопределена или перестает быть непрерывной или не выполняется условие Липшица, называются особыми точками уравнения . Таким образом, особые точки это те точки, в которых нарушаются условия теоремы существования и единственности. Особые точки могут быть изолированными, а могут составлять и целые области.

Частные случаи уравнений II порядка Рассмотрим частные случаи уравнений II порядка, допускающих «понижение» порядка, т.е. случаи, когда уравнение II порядка приводится к интегрированию двух уравнений первого порядка.

Рассмотрим линейное неоднородное уравнение с постоянными коэффициентами

Рассмотрим линейное неоднородное уравнение ,

На главную