Лекции и задачи по физике Атомная физика

Теория атома водорода по Бору Модели атома Томсона и Резерфорда Представление об атомах как неделимых мельчайших частицах вещества («атомос» — неразложимый) возникло еще в античные времена (Демокрит, Эпикур, Лукреций). В средние века, во времена безграничного господства церкви, учение об атомах, будучи материалистическим, естественно, не могло получить признания, а тем более дальнейшего развития. К началу XVIII в. атомистическая теория приобретает все большую популярность, так как к этому времени в работах А. Лавуазье (1743—1794, французский химик), М. В. Ломоносова и Д. Дальтона была доказана реальность существования атомов. Однако в это время вопрос о внутреннем строении атомов даже не возникал, так как атомы по-прежнему считались неделимыми.

Постулаты Бора Первая попытка построить качественно новую — квантовую — теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885—1962). Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.

Спектр атома водорода по Бору Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем — систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Элементы квантовой механики Корпускулярно-волновой дуализм свойств вещества Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.

Соотношение неопределенностей Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц.

Движение свободной частицы Свободная частица — частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия частицы U(x) = const и ее можно принять равной нулю.

Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

Элементы современной физики атомов и молекул Атом водорода в квантовой механике Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не+, двукратно ионизованного лития Li++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

1s-Состояние электрона в атоме водорода

Принцип неразличимости тождественных частиц. Фермионы и бозоны Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например электронов. Все электроны имеют одинаковые физические свойства — массу, электрический заряд, спин и другие внутренние характеристики (например, квантовые числа). Такие частицы называют тождественными.

Периодическая система элементов Менделеева Принцип Паули, лежащий в основе систематики заполнения электронных состояний в атомах, позволяет объяснить Периодическую систему элементов Д. И. Менделеева (1869) — фундаментального закона природы, являющегося основой современной химии, атомной и ядерной физики.

Молекулы: химические связи, понятие об энергетических уровнях Молекула — наименьшая частица вещества, состоящая из одинаковых или различных атомов, соединенных между собой химическими связями, и являющаяся носителем его основных химических и физических свойств. Химические связи обусловлены взаимодействием внешних, валентных электронов атомов. Наиболее часто в молекулах встречается два типа связи: ионная и ковалентная

Поглощение. Спонтанное и вынужденное излучения Как отмечалось выше, атомы могут находиться лишь в квантовых состояниях с дискретными значениями энергии Е1, Е2, Е3, ... Ради простоты рассмотрим только два из этих состояний (1 и 2) с энергиями Е1 и Е2. Если атом находится в основном состоянии 1, то под действием внешнего излучения может осуществиться вынужденный переход в возбужденное состояние 2, приводящий к поглощению излучения. Вероятность подобных переходов пропорциональна плотности излучения, вызывающего эти переходы.

Элементы квантовой статистики Квантовая статистика — раздал статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.

Вырожденный электронный газ в металлах Распределение электронов по различным квантовым состояниям подчиняется принципу Паули, согласно которому в одном состоянии не может быть двух одинаковых (с одинаковым набором четырех квантовых чисел) электронов, они должны отличаться какой-то характеристикой, например направлением спина. Следовательно, по квантовой теории, электроны в металле не могут располагаться на самом низшем энергетическом уровне даже при 0 К. Согласно принципу Паули, электроны вынуждены взбираться вверх «по энергетической лестнице».

Кристаллы. Элементы кристаллографии

Молярный объем кристалла

Vm = M/r,

где М — молярная масса вещества; r — плотность кристалла. Объем V элементарной ячейки в кристаллах:

а) при кубической сингонии V = a3;

б) при гексагональной сингонии . Здесь а и с — параметры решетки.

Если для гексагональной решетки принять теоретическое значение

, то .

Число Zm элементарных ячеек в одном моле кристалла

Zm = Vm/v, или Zm = kNA/n,

где k — число одинаковых атомов в химической формуле соединения (например, в кристалле AgBr число одинаковых атомов Ag или Вг в химической формуле соединения равно единице); NA — постоянная Авогадро; п— число одинаковых атомов, приходящихся на элементарную ячейку. Число Z элементарных ячеек в единице объема кристалла

Z = Zm/Vm

или в общем случае

для кристалла, состоящего из одинаковых атомов (k = l),

Параметр а кубической решетки

Расстояние d между соседними атомами в кубической решетке:

а) в гранецентрированной ,

б) в объемно центрированной .

Электроны в металле (по квантовой статистике)

 

 Распределение Ферми по энергиям для свободных электронов в металле:

при Т¹0

при Т¹0  при (e<ef), 

где dn(e)-концентрация электронов, энергия которых заключена в интервале, значений от e до e+de; m и e - масса и энергия электрона; eƒ- уровень (или энергия) Ферми.

Уровень Ферми в металле при Т=0

.

Температура Ткр вырождения

.

Удельная проводимость собственных полупроводников

g = en(bn + bp),

где e - заряд электрона; n - концентрация носителей заряда (электронов и дырок); bn и bp - подвижности электронов и дырок.

Напряжение UH на гранях образца при эффекте Холла

UH = RHBjℓ,

где RH - Постоянная Холла; В - индукция магнитного поля;

ℓ - ширина пластины; j - плотность тока.

Постоянная Холла для полупроводников типа алмаза, кремния; германия и др., обладающих носителями заряда одного вида (n или р),

,

где n - концентрация носителей заряда.

Лекции и задачи по физике Примеры решений контрольной работы