Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Предмет физики и ее связь с другими науками

Окружающий вас мир, все существующее вокруг вас и обнаруживаемое нами посредством ощущений представляет собой материю.

Неотъемлемым свойством материи и формой ее существования является движение. Движение в широком смысле слова — это всевозможные изменения материи — от простого перемещения до сложнейших процессов мышления.

Разнообразные формы движения материи изучаются различными науками, в том числе и физикой. Предмет физики, как, впрочем, и любой науки, может быть раскрыт только по мере его детального изложения. Дать строгое определение предмета физики довольно сложно, потому что границы между физикой и рядом смежных дисциплин условны. На данной стадии развития нельзя сохранить определение физики только как науки о природе.

Академик А. Ф. Иоффе (1880—1960; российский физик)* определил физику как науку, изучающую общие свойства и законы движения вещества и поля. В настоящее время общепризнано, что вес взаимодействия осуществляются посредством полей, например гравитационных, электромагнитных, полей ядерных сил. Поле наряду с веществом является одной из форм существования материи. Неразрывная связь поля и вещества, а также различие в их свойствах будут рассмотрены по мере изучения курса.

Физика — наука о наиболее простых и вместе с тем наиболее общих формах движения материи и их взаимных превращениях. Изучаемые физикой формы движения материи (механическая, тепловая и др.) присутствуют во всех высших и более сложных формах движения материи (химических, биологических и др.). Поэтому они, будучи наиболее простыми, являются в то же время наиболее общими формами движения материи. Высшие и более сложные формы движения материи — предмет изучения других наук (химии, биологии и др.).

Физика тесно связана с естественными науками. Эта теснейшая связь физики с другими отраслями естествознания, как отмечал академик С. И. Вавилов (1891—1955; российский физик и общественный деятель), привела к тому, что физика глубочайшими корнями вросла в астрономию, геологию, химию, биологию и другие естественные науки. В результате образовался ряд новых смежных дисциплин, таких, как астрофизика, биофизика и др.

Физика тесно связана и с техникой, причем эта связь имеет двусторонний характер. Физика выросла из потребностей техники (развитие механики у древних греков, например, было вызвано запросами строительной и военной техники того времени), и техника, в свою очередь, определяет направление физических исследований (например, в свое время задача создания наиболее экономичных тепловых двигателей вызвала бурное развитие термодинамики). С другой стороны, от развития физики зависит технический уровень производства. Физика — база для создания новых отраслей техники (электронная техника, ядерная техника и др.).

Бурный темп развития физики, растущие связи ее с техникой указывают на значительную роль курса физики во втузе: это фундаментальная база для теоретической подготовки инженера, без которой его успешная деятельность невозможна.

Единицы физических величин

Основным методом исследования в физике является опит — основанное на практике чувственно-эмпирическое познание объективной действительности, т. е. наблюдение исследуемых явлений в точно учитываемых условиях, позволяющих следить за ходом явлений и многократно воспроизводить его при повторении этих условий.

Для объяснения экспериментальных  фактов выдвигаются гипотезы. Гипотеза — это научное предположение, выдвигаемое для объяснения какого-либо явления и требующее проверки на опыте и теоретического обоснования для того, чтобы стать достоверной научной теорией.

В результате обобщения экспериментальных фактов, а также результатов деятельности людей устанавливаются физические законы — устойчивые повторяющиеся объективные закономерности, существующие в природе. Наиболее важные законы устанавливают связь между физическими величинами, для чего необходимо эти величины измерять. Измерение физической величины есть действие, выполняемое с помощью средств измерений для нахождения значения физической величины в принятых единицах. Единицы физических величин можно выбрать произвольно, но тогда возникнут трудности при их сравнении. Поэтому целесообразно ввести систему единиц, охватывающую единицы всех физических величин.

Для построения системы единиц произвольно выбирают единицы для нескольких не зависящих друг от друга физических величии. Эти единицы называются основными. Остальные же величины и их единицы выводятся из законов, связывающих эти величины и их единицы с основными. Они называются производными.

В настоящее время обязательна к применению в научной, а также в учебной литературе Система Интернациональная (СИ), которая строится на семи основных единицах — метр, килограмм, секунда, ампер, кельвин, моль, кандела — и двух дополнительных — радиан и стерадиан.

Метр (м) — длина пути, проходимого светом в вакууме за 1/299792458 с.

Килограмм (кг) — масса, равная массе международного прототипа килограмма (платиноиридиевого цилиндра, хранящегося в Международном бюро мер и весов в Севре, близ Парижа).

Секунда (с) — время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер (А) — сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создаст между этими проводниками силу, равную 2×10–7 Н на каждый метр длины.

Кельвин (К) — 1/273,16 часть термодинамической температуры тройной точки воды.

Моль (моль) — количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде 12С массой 0,012 кг.

Кандела (кд) — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540×1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Радиан (рад) — угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан (ср) — телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Для установления производных единиц используют физические законы, связывающие их с основными единицами. Например, из формулы равномерного прямолинейного движения v=s/t (s – пройденный путь, t — время) производная единица скорости получается равной 1 м/с.

 

  В механике Аристотеля постулаты отсутствуют. Она, как системное отображение физических процессов, не замкнута и может оказаться диалектической основой предсказательного описания максимальной совокупности явлений, происходящих в природе. Однако в сложившемся догматизированном виде она не соответствует принятым понятиям, не приспособлена к математической формализации, к использованию эмпирических фактов и со времен Аристотеля практически не развивалась. Но, тем не менее, именно его начала являются основой для выхода физики из того кризиса, к которому ее привела механика И. Ньютона.

Естественно, что различие в основных категориях двух механик должно отражаться и на структуре их построения. Понятия, противоречащие диалектике, следовательно, отсутствующие в природе, вводились в структуру механики явно или неявно, с пониманием или волевым порядком — постулативно или аксиоматически. А связи между этими понятиями и свойствами формализовались математически — внесистемно с допущением возможности возникновения или исчезновения свойств, что не могло не отразиться на искажении понимания природных процессов. Особенно заметно такое искажение в описании природы квантовой механикой и общей теорией относительности.

Отдельно отмечу то обстоятельство, что в работе практически отсутствует применение современного математического аппарата и в первую очередь связанного с аксиоматическими и статическими методами, с дифференцированием и интегриро-ванием на базе постоянных величин. Это обусловлено тем, что к настоящему времени в теории математика подменила физику настолько, что в целых разделах науки (к примеру, в теории гравитации или в квантовой механике) почти полностью отсутствует понимание физических процессов, описываемых математическими методами. Более того, непонимание физики обосновывается красотой и ясностью математических методов. Но математическая красота становится ширмой, за которой не видны физические взаимосвязи. А это такое обстоятельство, которое ставит под сомнение правильность всего понятийного отображения природных процессов. И это сомнение подтверждается потерей наглядности при описании природных явлений почти во всей физике. Данные соображения дополняются следующими принципами:

• механические явления природы, как материальные процессы, независимо от их сложности должны иметь наглядное обоснование;

• в русской механике принципиально отсутствуют неизменные свойства и фундаментальные (постулируемые) параметры. Время, расстояние, масса, заряд и т.д. меняются в любой области пространства от точки к точке и меняются нелинейным образом. Они остаются относительно постоянными в пределах очень узкой по высоте гравипотен-циальной поверхности Земли, и математика, базирующаяся на их неизменности, вне этой поверхности корректные результаты выдавать не может;

• объемная степенная нелинейность взаимосвязей параметров свойств на десятки порядков не охватывается дифференциальным и интегральным исчислением. Отсут-ствуют даже подходы к формализации таких уравнений;

• в русской механике отсутствуют статические состояния и понятие покой всегда относительно.

Все тела-пространства непрерывно подвижны и приложение к ним статической математики возможно только в относительной форме при описании взаимодействия многих частиц с учетом того, что получаемый результат может также оказаться некорректным;

• математика базируется на аксиомах. Аксиомы, являются продуктом формальной логики. Положенные в основу той или другой математики, они могут оказаться несовместимыми между собой и привести к противоречивым следствиям и даже к возникновению противоречивых математических направлений. Именно это обстоятельство способствовало появлению нескольких взаимно противоречивых геометрий. Добавлю, что отсутствуют методы априорного выявления логической истинности и непротиворечивости аксиом, положенных в основу той или другой математики и по этой причине аксиомы не применимы к физическим процессам;

• современный математический аппарат не имеет качественной взаимосвязи между своими элементами — индексами (числами) и обеспечивает только двучастное (вероятностное) пропорционирование чисел-параметров, поэтому его применение в физике должно быть тщательно обосновано.

Векторное произведение можно рассчитать с помощью определителя:

Подпись:

Векторное произведение некоммутативно:

Подпись:

Дифференцирование векторных величин

 Производная вектора. Рассмотрим вектор , который изменяется по закону: , где t – время, тогда производная вектора   по переменной t равна:

  Дифференциалом (приращением) функции  называется выражение , тогда, используя выражение для производной вектора , получим дифференциал вектора :

Подпись:

Производная произведения векторов. Производная от скалярного и векторного произведения осуществляется по известным формулам:

Подпись:

Подпись:

(Примечание: некоторые понятия векторного анализа – градиент, циркуляция, ротор, а также элементы теории вероятности – мы рассмотрим в дальнейшем по ходу курса).


Элементы специальной (частной) теории относительности