Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Интерференция света

Предположим, что две монохроматические световые волны, накладываясь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1=А1 cos(w t + j1) и x2 = A2 cos(w t + j2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях (см. § 162). Напряженности электрического и магнитного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда результирующего колебания в данной точке  (см. 144.2)). Так как волны когерентны, то cos(j2 — j1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (I ~ А2)

 (172.1)

В точках пространства, где cos(j2—j1)>0, интенсивность I>I1+I2, где cos(j2—j1)<0, интенсивность I<I1+I2. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией света.

Для некогерентных волн разность j2—j1 непрерывно изменяется, поэтому среднее во времени значение cos(j2—j1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I1=I2 равна 2I1 (для когерентных волн при данном условии в максимумах I=4I1, в минимумах I=0).

Как можно создать условия, необходимые для возникновения интерференции световых волн? Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки M, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления п1 прошла путь s1, вторая — в среде с показателем преломления n2 — путь s2. Если в точке О фаза колебаний равна wt, то в точке М первая волна возбудит колебание A1cos(t–s1/v1), вторая волна — колебание A2cos(t–s2/v2), где v1=c/n1, v2=c/n2 — соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

(учли, что w /с = 2pn/с = 2p/l0, где l0 — длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, a D = L2 – L1 — разность оптических длин проходимых волнами путей — называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

  (172.2)

то d = ±2тp, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.

Если оптическая разность хода

  (172.3)

то d = ±2(т+1)p, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.

Методы наблюдения интерференции света

Для осуществления интерференции света необходимо получить когерентные световые пучки, для чего применяются различные приемы. До появления лазеров (см. § 233) во всех приборах для наблюдения интерференции света когерентные пучки получали разделением и последующим сведением световых лучей, исходящих из одного и того же источника. Практически это можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.

1. Метод Юнга. Источником света служит ярко освещенная щель S (рис. 245), от которой световая волна падает на две узкие равноудаленные щели S1 и S2, параллельные щели S. Таким образом, щели S1 и S2 играют роль когерентных источников.

Интерференционная картина (область ВС) наблюдается на экране (Э), расположенном на некотором расстоянии параллельно S1 и S2. Как уже указывалось (см. § 171), Т. Юнгу принадлежит первое наблюдение явления интерференции.

2. Зеркала Френеля. Свет от источника S (рис. 246) падает расходящимся пучком на два плоских зеркала А1О и А2О, расположенных относительно друг друга под углом, лишь немного отличающимся от 180° (угол j мал). Используя правила построения изображения в плоских зеркалах, можно показать, что и источник, и его изображения S1 и S2 (угловое расстояние между которыми равно 2j) лежат на одной и той же окружности радиуса r с центром в О (точка соприкосновения зеркал).

Световые пучки, отразившиеся от обоих зеркал, можно считать выходящими из мнимых источников S1 и S2, являющихся мнимыми изображениями S в зеркалах. Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые пучки, встречаясь друг с другом, интерферируют в области взаимного перекрывания (на рис. 246 она заштрихована). Можно показать, что максимальный угол расхождения перекрывающихся пучков не может быть больше 2j. Интерференционная картина наблюдается на экране (Э), защищенном от прямого попадания света заслонкой (З).

3. Бипризма Френеля. Она состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами. Свет от источника S (рис. 247) преломляется в обеих призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых источников S1 и S2, являющихся когерентными. Таким образом, на поверхности экрана (в заштрихованной области) происходит наложение когерентных пучков и наблюдается интерференция.

Расчет интерференционной картины от двух источников. Расчет интерференционной картины для рассмотренных выше методов наблюдения интерференции света можно провести, используя две узкие параллельные щели, расположенные достаточно близко друг к другу (рис. 248). Щели S1 и S2 находятся на расстоянии d друг от друга и являются когерентными (реальными или мнимыми изображениями источника S в какой-то оптической системе) источниками света. Интерференция наблюдается в произвольной точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l>>d. Начало отсчета выбрано в точке О, симметричной относительно щелей.

Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода D=s2—s1 (см. § 172). Из рис. 248 имеем

откуда , или

Из условия l >> d следует, что s1 + s2 » 2l, поэтому

  (173.1)

Подставив найденное значение D (173.1) в условия (172.2) и (172.3), получим, что максимумы интенсивности будут наблюдаться в случае, если

  (173.2)

а минимумы — в случае, если

  (173.3)

Расстояние между двумя соседними максимумами (или минимумами), называемое шириной интерференционной полосы, равно

  (173.4)

Dx не зависит от порядка интерференции (величины т) и является постоянной для данных l, d и l0. Согласно формуле (173.4), Dx обратно пропорционально d; следовательно, при большом расстоянии между источниками, например при d»l, отдельные полосы становятся неразличимыми. Для видимого света l0»10–7 м, поэтому четкая, доступная для визуального наблюдения интерференционная картина имеет место при l>>d (это условие и принималось при расчете). По измеренным значениям l, d и Dх, используя (173.4), можно экспериментально определить длину волны света. Из выражений (173.2) и (173.3) следует, таким образом, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий т=0, проходит через точку О. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (т= 1), второго (т =2) порядков и т.д.

Описанная картина, однако, справедлива лишь при освещении монохроматическим светом (l0=const). Если использовать белый свет, представляющий собой непрерывный набор длин воли от 0,39 мкм (фиолетовая граница спектра) до 0,75 мкм (красная граница спектра), то интерференционные максимумы для каждой длины волны будут, согласно формуле (173.4), смещены друг относительно друга и иметь вид радужных полос. Только для m=0 максимумы всех длин воли совпадают, и в середине экрана будет наблюдаться белая полоса, по обе стороны которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т. д. (ближе к белой полосе будут находиться зоны фиолетового цвета, дальше — зоны красного цвета).

Пример 5. Два николя N1 и N2 расположены так, что угол между плоскостями поляризации составляет a = 60°. Определите, во сколько уменьшаются интенсивности Iест естественного света: 1) при прохождении через один николь N1; 2) при прохождении через оба николя. Коэффициент поглощения света в николе m = 0,05. Потери на отражение света не учитывать.

 

 Дано:

a = 60°

m = 0,05

Iест/ I1=? Iест/ I2=?

Естественный свет, падая на грань николя (см. рисунок), расщепляется вследствие двойного луче-преломления на два луча: обыкновенный и необыкновенный (оба линейно  поляризованы).

Обыкновенный луч поглощается зачерненной поверхностью призмы N1. Необыкновенный луч е проходит через призму, при этом его  интенсивность уменьшается вследствие поглощения. Интенсивность естественного света делится пополам между обыкновенным и необыкновенным лучами при входе в николь N1.

 


 

 .

Относительное уменьшение интенсивности после прохождения света через N1 можно записать

Подставляя численное значение m, получаем Iест/I1 = 2,1, т. е. интенсивность уменьшается в 2,1 раза после прохождения через N1. Интенсивность необыкновенного луча е, прошедшего через 2-ой николь, определяется законом Малюса (без учета поглощения света во втором николе)

I2 = I1 cos2 a.

Учитывая потери интенсивности во втором николе, получаем

I2 = I1 cos2 a (1-m).

Искомое уменьшение интенсивности при прохождении света через оба николя N1 и N2, найдем, разделив Iест естественного света на интенсивность I2, то есть

Подставляя m, получим

.

Таким образом, после прохождения света через оба николя интенсивность уменьшается в 8,86 раз.

Пример 11. Параллельный пучок света длиной волны λ=500 нм падает нормально на зачерненную поверхность, производя давление p=10 мкПа. Определить: 1) концентрацию п фотонов в пучке, 2) число n1 фотонов, падающих на поверхность площадью 1 м2 за время 1 с.

Решение. 1. Концентрация п фотонов в пучке может быть найдена, как частное от деления объемной плотности энергии w на энергию ε одного фотона:

n=w/ε  (1)

Из формулы p=w(1+ρ), определяющей давление света, где ρ-коэффициент отражения, найдем

w = p/(ρ+1). (2)

Подставив выражение для w из уравнения (2) в формулу (1), получим

 n = ρ/[(ρ+1)∙ε].  (3)

Энергия фотона зависит от частоты υ, а следовательно, и от длины световой волны λ:

 ε = hυ = hc/λ (4)

 Подставив выражение для энергии фотона в формулу (3), определим искомую концентрацию фотонов:

  n = (ρλ)/[(ρ+1)∙ε]. (5)

Коэффициент отражения ρ для зачерненной поверхности принимаем равным нулю.

Подставив числовые значения в формулу (5), получим

n=2,52∙1013 м-3.

2. Число n1 фотонов, падающих на поверхность площадью 1 м2 за время 1 с, найдем из соотношения n1=N/(St), где N — число фотонов, падающих за время t на поверхность площадью S. Но N=ncSt, следовательно,

n1=(ncSt)/(St)=nc

Подставив сюда значения п и с, получим

n1=7,56∙1021 м-2∙с-1.


Методы наблюдения и регистрации радиоактивных излучений и частиц