Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Дифракция Френеля на круглом отверстии и диске

Рассмотрим дифракцию в сходящихся лучах, или дифракцию Френеля, осуществляемую в том случае, когда дифракционная картина наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию.

1. Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром отверстия (рис. 259). Экран параллелен плоскости отверстия и находится от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами (см. (177.1) и (177.6)),

где знак плюс соответствует нечетным m и минус — четным т.

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке В будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю. Если отверстие открывает одну зону Френеля, то в точке В амплитуда А=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (см. § 177). Интенсивность света больше соответственно в четыре раза. Если отверстие открывает две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если m нечетное — то светлое кольцо), причем интенсивность в максимумах убывает с расстоянием от центра картины.

Расчет амплитуды результирующего колебания на внеосевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены.

Число зон Френеля, открываемых отверстием, зависит от его диаметра. Если он большой, то Аm<<A1 и результирующая амплитуда A=A1/2, т. е. такая же, как и при полностью открытом волновом фронте. Никакой дифракционной картины не наблюдается, свет распространяется, как и в отсутствие круглого отверстия, прямолинейно.

2. Дифракция на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром диска (рис. 260). В данном случае закрытый диском участок волнового фронта надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает m первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна

или

так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами, а интенсивность в максимумах убывает с расстоянием от центра картины.

С увеличением радиуса диска первая открытая зона Френеля удаляется от точки В и увеличивается угол jт (см. рис. 258) между нормалью к поверхности этой зоны и направлением на точку В. В результате интенсивность центрального максимума с увеличением размеров диска уменьшается. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место весьма слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно.

Отметим, что дифракция на круглом отверстии и дифракция на диске впервые рассмотрены Френелем.

Дифракция Фраунгофера на одной щели

Немецкий физик И. Фраунгофер (1787—1826) рассмотрел дифракцию плоских световых волн, или дифракцию в параллельных лучах. Дифракция Фраунгофера, имеющая большое практическое значение, наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию. Чтобы этот тип дифракции осуществить, достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием.

Рассмотрим дифракцию Фраунгофера от бесконечно длинной щели (для этого практически достаточно, чтобы длина щели была значительно больше ее ширины). Пусть плоская монохроматическая световая волна падает нормально плоскости узкой щели шириной а (рис. 261, а). Оптическая разность хода между крайними лучами МС и ND, идущими от щели в произвольном направлении j,

  (179.1)

где F — основание перпендикуляра, опущенного из точки М на луч ND.

Разобьем открытую часть волновой поверхности в плоскости щели MN на зоны Френеля, имеющие вид полос, параллельных ребру М щели. Ширина каждой зоны выбирается так, чтобы разность хода от краев этих зон была равна l/2, т. е. всего на ширине щели уместится D:l/2 зон. Так как свет на щель падает нормально, то плоскость щели совпадает с волновым фронтом; следовательно, все точки волнового фронта в плоскости щели будут колебаться в одинаковой фазе. Амплитуды вторичных волн в плоскости щели будут равны, так как выбранные зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения.

Из выражения (179.1) вытекает, что число зон Френеля, укладывающихся на ширине щели, зависит от угла j. От числа зон Френеля, в свою очередь, зависит результат наложения всех вторичных волн. Из приведенного построения следует, что при интерференции света от каждой пары соседних зон Френеля амплитуда результирующих колебаний равна нулю, так как колебания от каждой пары соседних зон взаимно гасят друг друга. Следовательно, если число зон Френеля четное, то

  (179.2)

и в точке В наблюдается дифракционный минимум (полная темнота), если же число зон Френеля нечетное, то

  (179.3)

и наблюдается дифракционный максимум, соответствующий действию одной нескомпенсированной зоны Френеля. Отметим, что в направлении j=0 щель действует как одна зона Френеля, и в этом направлении свет распространяется с наибольшей интенсивностью, т. е. в точке В0 наблюдается центральный дифракционный максимум.

Из условий (179.2) и (179.3) можно найти направления на точки экрана, в которых амплитуда (а следовательно, и интенсивность) равна нулю (sinjmin = ± ml/a) или максимальна (sinjmax = ±(2m+1)l/(2a)). Распределение интенсивности на экране, получаемое вследствие дифракции (дифракционный спектр), приведено на рис. 261, б. Расчеты показывают, что интенсивности в центральном и последующих максимумах относятся как 1 : 0,047 : 0,017 : 0,0083 : .... т.е. основная часть световой энергии сосредоточена в центральном максимуме. Из опыта и соответствующих расчетов следует, что сужение щели приводит к тому, что центральный максимум расплывается, а интенсивность уменьшается (это, естественно, относится и к другим максимумам). Наоборот, чем щель шире (а>l), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При а>>l в центре получается резкое изображение источника света, т. е. имеет место прямолинейное распространение света.

Положение дифракционных максимумов зависит от длины волны l, поэтому рассмотренная выше дифракционная картина имеет место лишь для монохроматического света. При освещении щели белым светом центральный максимум наблюдается в виде белой полоски; он общий для всех длин волн (при j =0 разность хода равна нулю для всех l). Боковые максимумы радужно окрашены, так как условие максимума при любых т различно для разных l. Таким образом, справа и слева от центрального максимума наблюдаются максимумы первого (m=1), второго (т=2) и других порядков, обращенные фиолетовым краем к центру дифракционной картины. Однако они настолько расплывчаты, что отчетливого разделения различных длин волн с помощью дифракции на одной щели получить невозможно.

Внешний фотоэффект

 Явление вырывания электронов с поверхности металлов световым потоком называется фотоэффектом. При взаимодействии квантов света (фотонов) с металлами выполняется соотношение, которое называется уравнением Эйнштейна

  , (27)

где  - энергия фотона, падающего на поверхность металла, Авых – работа выхода электронов из металла,  - максимальная кинетическая энергия фотоэлектронов, вылетающих из металла, h – постоянная Планка.

 Если энергия падающего фотона не сравнима с энергией покоя электрона Е0 = 0,51 МэВ, то кинетическую энергию можно рассчитать по классической формуле, то есть

 . (28)

Если же энергия кванта света, падающего на металл сравнима или больше Е0, то для вычисления кинетической энергии Екин фотоэлектронов следует воспользоваться релятивистской формулой

 , (29)

где m0с2 – энергия покоя электрона.

Если скорость вырванных из металла электронов , то энергия фотона , а n0 или lк соответствует красной границе фотоэффекта для данного металла, то есть lк – та максимальная длина волны фотона, при которой начинается для данного металла фотоэффект.

Пример 16. Электрон, начальной скоростью которого можно пренебречь, прошел ускоряющую разность потенциалов U. Найти длину волны де Бройля l для двух случаев: 1) U1= = 51 кВ; 2) U2 = 510 кВ.

Решение. Длина волны де Бройля l частицы зависит от ее импульса р и определяется формулой

l = 2pħ/p (1)

Импульс частицы можно определить, если известна ее кинетическая энергия Т. Связь импульса с кинетической энергией для нерелятивистского (когда T<<E0) и для релятивистского (когда T » E0) случаев соответственно выражается формулами:

;  (2)

 (3)

Формула (1) с учетом соотношений (2) и (3) запишется соответственно в нерелятивистском и релятивистском случаях:

 ; (4)

  (5)

Сравним кинетические энергии электрона, прошедшего заданные в условии задачи разности потенциалов U1 = 51 В и U2 = 510 кВ, с энергией покоя электрона и в зависимости от этого решим вопрос, которую из формул (4) и (5) следует применить для вычисления длины волны де Бройля.

Как известно, кинетическая энергия электрона, прошедшего ускоряющую разность потенциалов U, 

T = |e|U.

В первом случае T1 = |e|(U1 = 51 эВ = 0,51×10-4 МэВ, что много меньше энергии покоя электрона E0 = m0c2 = 0,51 МэВ. Следовательно, можно применить формулу (4).

Для упрощения расчетов заметим, что T1 = 10-4 m0c2. Подставив это выражение в формулу (4), перепишем ее в виде



Учтя, что  есть комптоновская длина волны lC, получим .

Так как lC = 2,43×10-12 м, то 

Во втором случае кинетическая энергия Т2= ½е½ U2 = 510 кэВ = 0,51 МэВ, т. е. равна энергии покоя электрона. Следовательно, необходимо применить релятивистскую формулу (5).

Учтя, что Т2 =0,51 МэВ=mc2, по формуле (5) найдем

Подставив значение lс в последнюю формулу и произведя вычисления, получим

l2=1,4 пм.


Методы наблюдения и регистрации радиоактивных излучений и частиц