Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Дифракция на пространственной решетке. Формула Вульфа — Брэггов

Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения (см. (180.3)). Кристаллы, являясь трехмерными пространственными решетками (см. § 181), имеют постоянную порядка 10–10 м и, следовательно, непригодны для наблюдения дифракции в видимом свете (l » 5×10–7 м). Эти факты позволили немецкому физику М. Лауэ (1879—1960) прийти к выводу, что в качестве естественных дифракционных решеток для рентгеновского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с l рентгеновского излучения (»10–12¸10–8 м).

Простой метод расчета дифракции рентгеновского излучения от кристаллической решетки предложен независимо друг от друга Г. В. Вульфом (1863—1925) и английскими физиками Г. и Л. Брэггами (отец (1862—1942) и сын (1890—1971)). Они предположили, что дифракция рентгеновского излучения является результатом его отражения от системы параллельных кристаллографических плоскостей (плоскостей, в которых лежат узлы (атомы) кристаллической решетки).

Представим кристаллы в виде совокупности параллельных кристаллографических плоскостей (рис. 264), отстоящих друг от друга на расстоянии d. Пучок параллельных монохроматических рентгеновских лучей (1, 2) падает под углом скольжения q (угол между направлением падающих лучей и кристаллографической плоскостью) и возбуждает атомы кристаллической решетки, которые становятся источниками когерентных вторичных волн 1' и 2', интерферирующих между собой, подобно вторичным волнам, от щелей дифракционной решетки. Максимумы интенсивности (дифракционные максимумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления удовлетворяют формуле Вульфа — Брэггов

  (182.1)

т. е. при разности хода между двумя лучами, отраженными от соседних кристаллографических плоскостей, кратной целому числу длин волн А, наблюдается дифракционный максимум.

При произвольном направлении падения монохроматического рентгеновского излучения на кристалл дифракция не возникает. Чтобы ее наблюдать, надо, поворачивая кристалл, найти угол скольжения. Дифракционная картина может быть получена и при произвольном положении кристалла, для чего нужно пользоваться непрерывным рентгеновским спектром, испускаемым рентгеновской трубкой. Тогда для таких условий опыта всегда найдутся длины волн l, удовлетворяющие условию (182.1).

Формула Вульфа — Брэггов используется при решении двух важных задач:

1. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя q и т, можно найти межплоскостное расстояние (d), т.е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного анализа. Формула Вульфа — Брэггов остается справедливой и при дифракции электронов и нейтронов. Методы исследования структуры вещества, основанные на дифракции электронов и нейтронов, называются соответственно электронографией и нейтронографией.

2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кристаллической структуре при известном d и измеряя q и т, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спектроскопии.

Разрешающая способность оптических приборов

Используя даже идеальную оптическую систему (такую, для которой отсутствуют дефекты и аберрации), невозможно получить стигматическое изображение точечного источника, что объясняется волновой природой света. Изображение любой светящейся точки в монохроматическом свете представляет собой дифракционную картину, т. е. точечный источник отображается в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами.

Согласно критерию Рэлея, изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого (рис. 265, а). При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для разрешения линий l1 и l2. Если критерий Рэлея нарушен, то наблюдается одна линия (рис. 265, б).

1. Разрешающая способность объектива. Если на объектив падает свет от двух удаленных точечных источников S1 и S2 (например, звезд) с некоторым угловым расстоянием dy, то вследствие дифракции световых волн на краях диафрагмы, ограничивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами (рис. 266). Можно доказать, что две близлежащие звезды, наблюдаемые в объективе в монохроматическом свете, разрешимы, если угловое расстояние между ними

  (183.1)

где l — длина волны света, D — диаметр объектива.

Разрешающей способностью (разрешающей силой) объектива называется величина

где dy — наименьшее угловое расстояние между двумя точками, при котором они еще оптическим прибором разрешаются.

Согласно критерию Рэлея, изображения двух одинаковых точек разрешимы, когда центральный максимум дифракционной картины для одной точки совпадает с первым минимумом дифракционной картины для другой (рис. 266). Из рисунка следует, что при выполнении критерия Рэлея угловое расстояние dy между точками должно быть равно j, т. е. с учетом (183.1)

Следовательно, разрешающая способность объектива

  (183.2)

т. е. зависит от его диаметра и длины волны света.

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение. Поэтому электронный микроскоп имеет очень высокую разрешающую способность (см. § 169).

Разрешающей способностью спектрального прибора называют безразмерную величину

 (183.3)

где dl — абсолютное значение минимальной разности длин волн двух соседних спектральных линий, при которой эти линии регистрируются раздельно.

2. Разрешающая способность дифракционной решетки. Пусть максимум т-го порядка для длины волны l2 наблюдается под углом j, т. е., согласно (180.3), dsinj=ml2. При переходе от максимума к соседнему минимуму разность хода меняется на l/N (см. (180.4)), где N — число щелей решетки. Следовательно, минимум l1, наблюдаемый под углом jmin, удовлетворяет условию dsinjmin=ml1+l1/N. По критерию Рэлея, j =jmin, т. е. ml2=ml1+l1/N или l2/(l2–l1)=mN. Tax как l1 и l2 близки между собой, т. е. l2–l1=dl то, согласно (183.3),

Таким образом, разрешающая способность дифракционной решетки пропорциональна порядку m спектра и числу N щелей, т. е. при заданном числе щелей увеличивается при переходе к большим значениям порядка m интерференции. Современные дифракционные решетки обладают довольно высокой разрешающей способностью (до 2×105).

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Между стеклянной пластинкой и лежащей на ней плосковыпуклой стеклянной линзой налита жидкость, показатель преломления которой меньше показателя преломления стекла. Радиус восьмого темного кольца Ньютона при наблюдении в отраженном свете (l = 700 нм) r8 = 2 мм. Радиус кривизны выпуклой поверхности линзы R = 1 м. Найдите показатель преломления жидкости.

 

 Дано:

r8 = 2 мм = 2×10-3 м

l = 700 нм = 7×10-7м

R = 1 м

 nж =?

Параллельный пучок лучей падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей промежутка между линзой и пластиной. При наложении отраженных волн, возникают интерференционные кольца равной толщины.

Оптическая разность хода луча 1, отраженного в точке А от выпуклой поверхности линзы и луча 2, отраженного от стеклянной пластинки в точке В, d = 2dknж + ; где dk – толщина зазора в том месте, где наблюдается k-ое кольцо; 

nж – показатель преломления жидкости, заполняющей пространство между линзой и

 стеклянной пластинкой;

 - добавочная разность хода при отражении луча 2 (в точке В) от оптически более плотной среды. Так как кольцо темное, то выполняется условие:

d= (2k + 1) l/2 или 2dknж +  = (2k + 1) l/2;

2dknж = kl откуда 

Из геометрии рисунка: ,

так как , то ,

тогда ; подставив dk в выражение для nж, получим . Проведя вычисления, получим nж= 1,4.

Ответ: nж= 1,4.

Пример 17. На узкую щель шириной а = 1 мкм направлен параллельный пучок электронов, имеющих скорость = 3,65 Мм/с. Учитывая волновые свойства электронов, определить расстояние х между двумя максимумами интенсивности первого порядка в дифракционной картине, полученной на экране, отстоящем на L = 10 см от щели.

Решение. Согласно гипотезе де Бройля, длина волны l, соответствующая частице массой т, движущейся со скоростью, выражается формулой

l = 2pħ/(mu).  (1)

Дифракционный максимум при дифракции на одной щели наблюдается при условии

a sin j = (2k+1)(l/2),  (2)

где k = 0, 1, 2, 3, . . .—порядковый номер максимумов; a — ширина щели.

Подпись: Рис.9Для максимумов первого порядка (k=1) угол j заведомо мал, поэтому sin j = j, и, следовательно, формула (2) примет вид

aj = 3/2l,  (3)

 а искомая величина х, как следует из рис. 9,

x = 2L tg j = 2Lj, (4)

так как tg j = j.

Получим

 

Подстановка в последнее равенство длины волны де Бройля по формуле (1) дает

.

После вычисления по формуле (5) получим

 x = 6 · 10-41=60 мкм.


Методы наблюдения и регистрации радиоактивных излучений и частиц