Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Поляризация света

Естественный и поляризованный свет

Следствием теории Максвелла (см. § 162) является поперечность световых волн: векторы напряженностей электрического Е и магнитного Н полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости v распространения волны (перпендикулярно лучу). Поэтому для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов. Обычно все рассуждения ведутся относительно светового вектора — вектора напряженности Е электрического поля (это название обусловлено тем, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис. 272, а; луч перпендикулярен плоскости рисунка). В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов Е — одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора Е (и, следовательно, Н) называется естественным.

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора Е (рис. 272, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в), называется плоскополяризованным (линейно поляризованным).

Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны, называется плоскостью поляризации. Плоскополяризованный свет является предельным случаем эллиптически поляризованного света — света, для которого вектор Е (вектор Н) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается (см. § 145) в прямую (при разности фаз j, равной нулю или p), то имеем дело с рассмотренным выше плоскополяризованным светом, если в окружность (при j = ±p/2 и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кругу) светом.

Степенью поляризации называется величина

где Imax, и Imin — соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Imax=Imin и Р=0, для плоскополяризованного Imin =0 и Р=1.

Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы (их анизотропия известна, см. § 70). Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.

Рассмотрим классические опыты с турмалином (рис. 273). Направим естественный свет перпендикулярно пластинке турмалина T1, вырезанной параллельно так называемой оптической оси ОО' (см. § 192). Вращая кристалл T1 вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина T2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла к между оптическими осями кристаллов по закону Малюса*:

 (190.1)

где I0 и I — соответственно интенсивности света, падающего на второй кристалл и вышедшего из него.

 * Э. Малюс (1775—1812) — французский физик.

Следовательно, интенсивность прошедшего через пластинки света изменится от минимума (полное гашение света) при a=p/2 (оптические оси пластинок перпендикулярны) да максимума при a=0 (оптические оси пластинок параллельны). Однако, как это следует из рис. 274, амплитуда Е световых колебаний, прошедших через пластинку Т2, будет меньше амплитуды световых колебаний Е0, падающих на пластинку T2.

Так как интенсивность света пропорциональна квадрату амплитуды, то и получается выражение (190.1).

Результаты опытов с кристаллами турмалина объясняются довольно просто, если исходить из изложенных выше условий пропускания света поляризатором. Первая пластинка турмалина пропускает колебания только определенного направления (на рис. 273 это направление показано стрелкой AВ), т. е. преобразует естественный свет в плоскополяризованный. Вторая же пластинка турмалина в зависимости от ее ориентации из поляризованного света пропускает большую или меньшую его часть, которая соответствует компоненту Е, параллельному оси второго турмалина. На рис. 273 обе пластинки расположены так, что направления пропускаемых ими колебаний АВ и А'В' перпендикулярны друг другу. В данном случае Т1 пропускает колебания, направленные по АВ, а Т2 их полностью гасит, т.е. за вторую пластинку турмалина свет не проходит.

Пластинка Т1, преобразующая естественный свет в плоскополяризованный, является поляризатором. Пластинка Т2, служащая для анализа степени поляризации света, называется анализатором. Обе пластинки совершенно одинаковы (их можно поменять местами).

Если пропустить естественный свет через два поляризатора, главные плоскости которых образуют угол a, то из первого выйдет плоскополяризованный свет, интенсивность которого I0=1/2Iест, из второго, согласно (190.1), выйдет свет интенсивностью I=I0cos2a . Следовательно, интенсивность света, прошедшего через два поляризатора,

откуда I0=1/2Iест (поляризаторы параллельны) и Imin = 0 (поляризаторы скрещены).

Поляризация света при отражении и преломлении на границе двух диэлектриков

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется в распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усаливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 275 они обозначены точками), в преломленном — колебания, параллельные плоскости падения (изображены стрелками).

Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781—1868) установил закон, согласно которому при угле падения iB (угол Брюстера), определяемого соотношением

(n21 — показатель преломления второй среды относительно первой), отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плоскости падения) (рис. 276). Преломленный же луч при угле падения iB поляризуется максимально, но не полностью.

Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны (tgiB = siniB/cosiB, n21=siniB/sini2 (i2 — угол преломления), откуда cosiB=sini2). Следовательно, iB + i2 = p/2, но i’B = iB (закон отражения), поэтому i’B + i2 = p/2.

Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух изотропных диэлектриков (так называемые формулы Френеля).

Степень поляризации преломленного света может быть значительно повышена (многократным преломлением при условии падения света каждый раз на границу раздела под углом Брюстера). Если, например, для стекла (п= 1,53) степень поляризации преломленного луча составляет »15%, то после преломления на 8—10 наложенных друг на друга стеклянных пластинок вышедший из такой системы свет будет практически полностью поляризованным. Такая совокупность пластинок называется стопой. Стопа может служить для анализа поляризованного света как при его отражении, так и при его преломлении.

Примеры решения задач

Пример 1. Автомобиль проходит первую треть пути со скоростью , а оставшуюся часть пути со скоростью км/ч. Определить скорость на первом участке пути, если средняя скорость на всем пути км/ч.

Решение. Весь путь разбиваем на два отрезка s1 и s2. Скорость и время движения обозначим соответственно . Средняя скорость определяется как частное от деления всего пройденного пути на время, за которое этот путь пройден:

.

Для каждого отрезка пути имеем:

.

На основании условия задачи запишем следующие вспомогательные уравнения движения:

Решив полученную систему уравнений относительно , получим

Соотношения неопределенностей:

а) для координаты и импульса частицы DpDx≥ħ где Dpx — неопределенность проекции импульса частицы на ось х; Dx — неоп­ределенность ее координаты;

б) для энергии и времени  DEDt≥ħ, где DE — неопределенность энергии данного квантового состояния; Dt — время пребывания системы в этом состоянии.

Радиоактивность

• Основной закон радиоактивного распада

N=N0e-λt,

где N — число нераспавшихся атомов в момент времени t; N0— число нераспавшихся атомов в момент, принятый за начальный (при t=0); е — основание натуральных логарифмов; λ — постоян­ная радиоактивного распада.

• Период полураспада T1/2 — промежуток времени, за который число нераспавшихся атомов уменьшается в два раза. Период полу­распада связан с постоянной распада соотношением

T1/2 = ln2/λ = 0,693/λ .

• Число атомов, распавшихся за время t,

∆N = N0 - N = N0, (1 - е-λt).

Если промежуток времени ∆t << T1/2. то для определения числа распавшихся атомов можно применять приближенную формулу

∆N ≈ λN∆t

Среднее время жизни т радиоактивного ядра — промежуток времени, за который число нераспавшихся ядер уменьшается в е раз:

τ = 1/λ

• Число атомов, содержащихся в радиоактивном изотопе,

N = (m/M)×NA

где m — масса изотопа; М — его молярная масса; NA — постоян­ная Авогадро.

• Активность А нуклида в радиоактивном источнике (актив­ность изотопа) есть величина, равная отношению числа dN ядер, распавшихся в изотопе, к промежутку времени dt, за которое произошел распад. Активность определяется по формуле

A = -dN/dt = λN,

или после замены N по основному закону радиоактивного распада

A = λN0e-λt

Активность изотопа в начальный момент времени (t=0)

A0 = λN0 .

Активность изотопа изменяется со временем по тому же закону, что и число нераспавшихся ядер:

A = A0e-λt

• Массовая активность а радиоактивного источника есть величина равная отношению его активности A к массе т этого источни­ка, т. е.

a = A/m.

● Если имеется смесь ряда радиоактивных изотопов, образую­щихся один из другого, и если постоянная распада λ первого члена ряда много меньше постоянных всех остальных членов ряда, то в смеси устанавливается состояние радиоактивного равновесия, при котором активности всех членов ряда равны между собой:

λ1N1 = λ2N2 = … = λkNk..


Методы наблюдения и регистрации радиоактивных излучений и частиц