Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Квантовая природа излучения

Тепловое излучение и его характеристики

Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких — преимущественно длинные (инфракрасные).

Тепловое излучение — практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой. С течением времени, в результате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.

Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела — мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

где d — энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от n до n+dn.

Единица спектральной плотности энергетической светимости (Rn,T) — джоуль на метр в квадрате (Дж/м2).

Записанную формулу можно представить в виде функции длины волны:

Так как c=ln, то

где знак минус указывает на то, что с возрастанием одной из величин (n или l) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

  (197.1)

С помощью формулы (197.1) можно перейти от Rn,T к Rl,T и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную излучательность) (ее называют просто энергетической светимостью тела), просуммировав по всем частотам:

  (197.2)

Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от n до n+dn, поглощается телом. Спектральная поглощательная способность — величина безразмерная. Величины Rn,T и Аn,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и n (вернее, к достаточно узкому интервалу частот от n до n+dn).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис. 286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела — тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела =AT = const<l.

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

Закон Кирхгофа

Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

  (198.1)

Для черного тела , поэтому из закона Кирхгофа (см. (198.1)) вытекает, что Rn,T для черного тела равна rn,T. Таким образом, универсальная функция Кирхгофа rn,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и n), так как Аn,T< 1 и поэтому Rn,T <rn,T. Кроме того, из (198.1) вытекает, что если тело при данной температуре Т не поглощает электромагнитные волны в интервале частот от n до n+dn, то оно их в этом интервале частот при температуре T и не излучает, так как при Аn,T =0

Rn,T =0.

Используя закон Кирхгофа, выражение для энергетической светимости тела (197.2) можно записать в виде

Для серого тела

 (198.2)

где

— энергетически светимость черного тела (зависит только от температуры).

Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.

Кинематика криволинейного движения

Основные законы и формулы

1.Простейшим видом криволинейного движения является равномерное движение точки по окружности. При таком движении угловая скорость

где  – угол поворота.

2.Полное ускорение точки  при этом тангенциальное ускорение  нормальное (центростремительное) ускорение

3.В случае равномерного вращательного движения угловая скорость может быть выражена формулой:

где Т – период вращения;  – частота вращения.

4.Угловая скорость связана с линейной скоростью  соотношением:

.

5.Для характеристики переменного вращательного движения вводят угловое ускорение :

При равнопеременном вращательном движении () будем иметь:

Тангенциальное и нормальное ускорения могут быть выражены через угловую скорость и ускорениеследующим образом:

Пример 3. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны λ=0,05 мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.

Решение. Расстояние, при котором будет видно темное пятно, определяется числом зон Френеля, укладывающихся в отверстии. Если число зон четное, то в центре дифракционной картины будет темное пятно.

Число зон Френеля, помещающихся в отверстии, убывает по мере удаления экрана от отверстия. Наименьшее четное число зон равно двум. Следовательно, максимальное расстояние, при котором еще будет наблюдаться темное пятно Рис. 4 в центре экрана, определяется условием, согласно которому в отверстии должны поместиться две зоны Френеля.

Из рис. 4 следует, что расстояние от точки наблюдения O на экране до края отверстия на 2 (λ/2) больше, чем расстояние bmax.

По теореме Пифагора получим

.

Учтя, что λ<<bmах и что членом, содержащим λ2, можно пренебречь, последнее равенство перепишем в виде

r2=2λbmax. откуда bmax=r2/(2λ). Произведя вычисления по последней формуле, найдем

bmax=1 м.


Методы наблюдения и регистрации радиоактивных излучений и частиц