Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Спектр атома водорода по Бору

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем — систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Следуя Бору, рассмотрим движение электрона в водородоподобной системе, ограничиваясь круговыми стационарными орбитами. Решая совместно уравнение (208.1) , предложенное Резерфордом, и уравнение (210.1), получим выражение для радиуса n-й стационарной орбиты:

  (212.1)

где n = 1, 2, 3, ... . Из выражения (212.1) следует, что радиусы орбит растут пропорционально квадратам целых чисел.

Для атома водорода (Z = 1) радиус первой орбиты электрона при n = 1, называемый первым боровоским радиусом (а), равен

 (212.2)

что соответствует расчетам на основании кинетической теории газов. Так как радиусы стационарных орбит измерить невозможно, то для проверки теории необходимо обратиться к таким величинам, которые могут быть измерены экспериментально. Такой величиной является энергия, излучаемая и поглощаемая атомами водорода.

Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (тev2/2) и потенциальной энергии в электростатическом поле ядра (–Ze2/(4pe0r)):

(учли, что ; см. (208.1)). Учитывая квантованные для радиуса n-й стационарной орбиты значения (212.1), получим, что энергия электрона может принимать только следующие дозволенные дискретные значения:

  (212.3)

где знак минус означает, что электрон находится в связанном состоянии.

Из формулы (212.3) следует, что энергетические состояния атома образуют последовательность энергетических уровней, изменяющихся в зависимости от значения n. Целое число n в выражении (212.3), определяющее энергетические уровни атома, называется главным квантовым числом. Энергетическое состояние с n=1 является основным (нормальным) состоянием; состояния с n > 1 являются возбужденными. Энергетический уровень, соответствующий основному состоянию атома, называется основным (нормальным) уровнем; все остальные уровни являются возбужденными.

Придавая n различные целочисленные значения, получим для атома водорода (Z = 1), согласно формуле (212.3), возможные уровни энергии, схематически представленные на рис. 294. Энергия атома водорода с увеличением n возрастает и энергетические уровни сближаются к границе, соответствующей значению n = ¥. Атом водорода обладает, таким образом, минимальной энергией (E1 = –13,55 эВ) при n = 1 и максимальной (Е¥ = 0) при n = ¥. Следовательно, значение Е¥ = 0 соответствует ионизации атома (отрыву от него электрона). Согласно второму постулату Бора (см. (210.2)), при переходе атома водорода (Z= 1) из стационарного состояния л в стационарное состояние т с меньшей энергией испускается квант

откуда частота излучения

 (212.4)

где R = mee4/(8h3).

Воспользовавшись при вычислении R современными значениями универсальных постоянных, получим величину, совпадающую с экспериментальным значением постоянной Ридберга в эмпирических формулах для атома водорода (см. § 209). Это совпадение убедительно доказывает правильность полученной Бором формулы (212.3) для энергетических уровней водородоподобной системы.

Подставляя, например, в формулу (212.4) т=1 и п=2, 3, 4, ..., получим группу линий, образующих серию Лаймана (см. § 209) и соответствующих переходам электронов с возбужденных уровней (n = 2, 3, 4, ...) на основной (m = l). Аналогично, при подстановке m = 2, 3, 4, 5, 6 и соответствующих им значений n получим серии Бальмера, Пашена, Брэкета, Пфунда и Хэмфри (часть из них схематически представлена на рис. 294), описанные в § 209. Следовательно, по теории Бора, количественно объяснившей спектр атома водорода, спектральные серии соответствуют излучению, возникающему в результате перехода атома в данное состояние из возбужденных состояний, расположенных выше данного.

Спектр поглощения атома водорода является линейчатым, но содержит при нормальных условиях только серию Лаймана. Он также объясняется теорией Бора. Так как свободные атомы водорода обычно находятся в основном состоянии (стационарное состояние с наименьшей энергией при n = 1), то при сообщении атомам извне определенной энергии могут наблюдаться лишь переходы атомов из основного состояния в возбужденные (возникает серия Лаймана).

Теория Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта теория обладает внутренними противоречиями (с одной стороны, применяет законы классической физики, а с другой — основывается на квантовых постулатах). В теории Бора рассмотрены спектры атома водорода и водородоподобных систем и вычислены частоты спектральных линий, однако эта теория не смогла объяснить интенсивности спектральных линий и ответить на вопрос: почему совершаются те или иные переходы? Серьезным недостатком теории Бора была невозможность описания с ее помощью спектра атома гелия — одного из простейших атомов, непосредственно следующего за атомом водорода.

Пример 4. Маховик в виде диска массой m=50 кг и радиусом r=20 см, был раскручен до частоты n1=480 об/мин и затем предоставлен самому себе. Под воздействием трения маховик остановился.

 Найти момент М сил трения, считая его постоянным, принимая, что: а) маховик остановился через t=50 c; б) маховик до полной остановки сделал N=200 об.

 Решение. а). По второму закону динамики вращательного движения изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время действия этого момента

где J – момент инерции маховика,  и – начальная и конечная угловые скорости, соответственно.

Так как  то

Откуда

 (1)

Момент инерции диска относительно его геометрической оси

 

Подставив выражение момента инерции в формулу (1), найдем:

  (2)

Выразим угловую скорость маховика через частоту вращения

рад/с=50,2 рад/с.

Подставим числовые значения в формулу (2), получим

Н·м = –1 Н∙м.

б). В условии задачи дано число оборотов, сделанных маховиком до остановки, т.е. его угловое перемещение. Поэтому следует применить формулу, выражающую связь работы с изменением кинетической энергии:

или

  (3)

так как

Работа при вращательном движении определяется по формуле:

Подставим это выражение работы, а также выражение момента инерции диска в формулу (3), получим:

Отсюда момент силы трения

  (4)

Угол поворота в радианах

рад = 1256 рад.

Подставим числовые значения в выражение (4), найдем

Н·м = –1 Н∙м.

Знак «минус» показывает, что момент силы трения оказывает тормозящее действие.

Пример 5. Найти среднюю кинетическую энергию одной молекулы аммиака NH3 при температуре t=27 °С и среднюю энергию вращательного движения этой молекулы при той же температуре.

Решение. Средняя полная энергия молекулы определяется по формуле

  (1)

где i — число степеней свободы молекулы; k — постоянная Больцмана; Т—термодинамическая температура газа: T=t+Т0, где Т0=273 К.

Число степеней свободы i четырехатомной молекулы, какой является молекула аммиака, равно 6.

Подставим значения величин в (l):

.

Средняя энергия вращательного движения молекулы определяется по формуле

, (2)

где число 3 означает число степеней свободы поступательного движения.

Подставим в (2) значения величин и вычислим:

.

Заметим, что энергию вращательного движения молекул аммиака можно было получить иначе, разделив полную энергию (e) на две равные части. Дело в том, что у трех (и более) атомных молекул число степеней свободы, приходящихся на поступательное и вращательное движение, одинаково (по 3), поэтому энергии поступательного и вращательного движений одинаковы. В данном случае


Методы наблюдения и регистрации радиоактивных излучений и частиц