Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 298, а) для одномерного (по оси х) движения частицы. Для потенциального барьера прямоугольной формы высоты U и ширины l можем записать

При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при Е>U), либо отразится от него (при Е<U) и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же, даже при Е>U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E<U имеется также отличная от нуля вероятность, что частица окажется в области х>1, т. е. проникает сквозь барьер. Подобные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при условиях данной задачи.

Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид

  (221.1)

Общие решения этих дифференциальных уравнений:

  (221.2)

 

  (221.3)

В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид

 (221.4)

В этом выражении первый член представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй — волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево).

Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент B3 в формуле (221.3) следует принять равным нулю.

В области 2 решение зависит от соотношений Е>U или Е<U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при Е<U законы классической физика однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1), q=ib — мнимое число, где

Учитывая значение q и B3=0, получим решения уравнения Шредингера для трех областей в следующем виде:

 (221.5)

В области 2 функция (221.5) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что для частного случая высокого и широкого барьера, когда bl >>1, B2»0.

Качественный характер функций y1(х), y2(х) и y3(x) иллюстрируется на рис. 298, б, откуда следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нудя вероятность прохождения сквозь потенциальный барьер конечной ширины.

Таким образом, квантовая механика приводит к принципиально новому специфическому квантовому явлению, получившему название туннельного эффекта, в результате которого микрообъект может «пройти» сквозь потенциальный барьер.

Для описания туннельного эффекта используют понятие коэффициента прозрачности D потенциального барьера, определяемого как отношение плотности потока прошедших частиц к плотности потока падающих. Можно показать, что

Для того чтобы найти отношение |А3/А1|2, необходимо воспользоваться условиями непрерывности y и y' на границах барьера х=0 и х=l (рис. 298):

  (221.6)

Эти четыре условия дают возможность выразить коэффициенты A2, A3, В1 и В2 через А1. Совместное решение уравнений (221.6) для прямоугольного потенциального барьера дает (в предположении, что коэффициент прозрачности мал по сравнению с единицей)

 (221.7)

где U — высота потенциального барьера, Е — энергия частицы, l — ширина барьера, D0 — постоянный множитель, который можно приравнять единице. Из выражения (221.7) следует, что D сильно зависит от массы т частицы, ширины l барьера и от (U—E); чем шире барьер, тем меньше вероятность прохождения сквозь него частицы.

Для потенциального барьера произвольной формы (рис. 299), удовлетворяющей условиям так называемого квазиклассического приближения (достаточно гладкая форма кривой), имеем

где U=U(x).

С классической точки зрения прохождение частицы сквозь потенциальный барьер при Е<U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может проникнуть, можно пояснить соотношением неопределенностей. Неопределенность импульса Dр на отрезке Dх=l составляет Dp>h/l. Связанная с этим разбросом в значениях импульса кинетическая энергия (Dр)2/(2m) может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной.

Основы теории туннельных переходов заложены работами Л. И. Мандельштама и М. А. Леонтовича (1903—1981). Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например, явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например, a-распад, протекание термоядерных реакций).

Линейный гармонический осциллятор в квантовой механике

Линейный гармонический осциллятор — система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории (см. § 142). Пружинный, физический и математический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора (см. (141.5)) равна

 (222.1)

где w0 — собственная частота колебаний осциллятора, т — масса частицы. Зависимость (222.1) имеет вид параболы (рис. 300), т. е. «потенциальная яма» в данном случае является параболической.

Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е (см. рис. 16). В точках с координатами ±xmax полная энергия Е равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (–xmax, +xmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в «потенциальной яме» с координатами – xmax <х< xmax «без права выхода» из нее.

Гармонический осциллятор в квантовой механике — квантовый осциллятор — описывается уравнением Шредингера (217.5), учитывающим выражение (222.1) для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются уравнением Шредингера вида

  (222.2)

где Е — полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что уравнение (222.2) решается только при собственных значениях энергии

 (222.3)

Формула (222.3) показывает, что энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена снизу отличным от нуля, как и для прямоугольной «ямы» с бесконечно высокими «стенками» (см. § 220), минимальным значением энергии E0=1/2ћw0. Существование минимальной энергии — она называется энергией нулевых колебаний — является типичной для квантовых систем и представляет собой прямое следствие соотношения неопределенностей.

Наличие нулевых колебаний означает, что частица не может находиться на дне «потенциальной ямы», причем этот вывод не зависит от ее формы. В самом деле, «падение на дно ямы» связано с обращением в нуль импульса частицы, а вместе с тем и его неопределенности. Тогда неопределенность координаты становится сколь угодно большой, что противоречит, в свою очередь, пребыванию частицы в «потенциальной яме».

Вывод о наличии энергии нулевых колебаний квантового осциллятора противоречит выводам классической теории, согласно которой наименьшая энергия, которую может иметь осциллятор, равна нулю (соответствует покоящейся в положении равновесия частице). Например, классическая физика приводит к выводу, что при Т=0 энергия колебательного движения атомов кристалла должна обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное колебаниями атомов. Однако эксперимент показывает, что интенсивность рассеяния света при понижении температуры не равна нулю, а стремится к некоторому предельному значению, указывающему на то, что при Т®0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний.

Из формулы (222.3) также следует, что уровни энергии линейного гармонического осциллятора расположены на одинаковых расстояниях друг от друга (рис. 300), а именно расстояние между соседними энергетическими уровнями равно ћw0, причем минимальное значение энергии E0=1/2ћw0.

Строгое решение задачи о квантовом осцилляторе приводит еще к одному значительному отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области |x|£xmax (см. рис. 16), в то время как с классической точки зрения она не может выйти за пределы области (–xmax, +xmax). Таким образом, имеется отличная от нуля вероятность обнаружить частицу в той области, которая является классически запрещенной. Этот результат (без его вывода) демонстрируется на рис. 301, где приводится квантовая плотность вероятности w обнаружения осциллятора для состояния п=1. Из рисунка следует, что для квантового осциллятора действительно плотность вероятности w имеет конечные значения за пределами классически дозволенной области |x|£xmax, т.е. имеется конечная (но небольшая) вероятность обнаружить частицу в области за пределами «потенциальной ямы». Существование отличных от нуля значений w за пределами «потенциальной ямы» объясняется возможностью прохождения микрочастиц сквозь потенциальный барьер (см. § 221).

Пример 3. Автомобиль массой 1 т поднимается по шоссе с уклоном 300 под действием силы тяги 7 кН. Коэффициент трения между шинами автомобиля и поверхностью шоссе 0,1. Найти ускорение автомобиля.

Решение. На автомобиль действуют: mg – сила тяжести, N – сила нормальной реакции шоссе, F– сила тяги, Fтр. – сила трения. Вектор а, по условию задачи, направлен вверх по наклонной плоскости (рис. 4). Запишем для автомобиля уравнение 

второго закона Ньютона в векторной форме:

 mg+F+N+Fтр.=ma. Рис. 4

Спроецируем обе части этого уравнения на выбранные направления осей Х и Y:

 , (1)

 . (2)

Из уравнения (2) находим, что . Учитывая, что , запишем уравнение (1) в виде , откуда

Пример 10. Молярная изохорная теплоемкость аргона при температуре 4 К равна 0,174 Дж/(моль∙К). Определить значение молярной изохорной теплоемкости аргона при температуре 2 К.

Решение. Согласно теории Дебая, теплоемкость кристаллической решетки при низких температурах Т, когда Т<<θD, где θD – характеристическая температура Дебая, пропорциональна кубу термодинамической температуры,

. (1)

При высоких температурах, когда Т>>θD, теплоемкость кристаллической решетки описывается законом Дюлонга и Пти

С=3R=25 Дж/(моль∙К). (2)

Так как при Т1=4 К теплоемкость аргона С1=0,174 Дж/(моль∙К) много меньше, чем 3R=25 Дж/(моль∙К), выполняется закон Т3 Дебая, согласно которому

, , (3)

или

.  (4)

Подставляя числовые данные в (4), получим

С2=0,022 Дж/(моль∙К).


Методы наблюдения и регистрации радиоактивных излучений и частиц