Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Молекулы: химические связи, понятие об энергетических уровнях

Молекула — наименьшая частица вещества, состоящая из одинаковых или различных атомов, соединенных между собой химическими связями, и являющаяся носителем его основных химических и физических свойств. Химические связи обусловлены взаимодействием внешних, валентных электронов атомов. Наиболее часто в молекулах встречается два типа связи: ионная и ковалентная (см. § 71).

Ионная связь (например, в молекулах NaCl, KBr) осуществляется электростатическим взаимодействием атомов при переходе электрона одного атома к другому, т. е. при образовании положительного и отрицательного ионов. Ковалентная связь (например, в молекулах H2, С2, СО) осуществляется при обобществлении валентных электронов двумя соседними атомами (спины валентных электронов должны быть антипараллельны). Ковалентная связь объясняется на основе принципа неразличимости тождественных частиц (см. § 226), например электронов в молекуле водорода. Неразличимость частиц приводит к специфическому взаимодействию между ними, называемому обменным взаимодействием. Это чисто квантовый эффект, не имеющий классического объяснения, но его можно себе представить так, что электрон каждого из атомов молекулы водорода проводит некоторое время у ядра другого атома и, следовательно, осуществляется связь обоих атомов, образующих молекулу. При сближении двух водородных атомов до расстояний порядка боровского радиуса возникает их взаимное притяжение и образуется устойчивая молекула водорода.

Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, вращение молекулы. Решение этого уравнения — очень сложная задача, которая обычно разбивается на две: для электронов и ядер.

Энергия изолированной молекулы

  (230.1)

где Еэл — энергия движения электронов относительно ядер, Екол — энергия колебаний ядер (в результате которых периодически изменяется относительное положение ядер), Евращ — энергия вращения ядер (в результате которых периодически изменяется ориентация молекулы в пространстве). В формуле (230.1) не учтены энергия поступательного движения центра масс молекулы и энергия ядер атомов в молекуле. Первая из них не квантуется, поэтому ее изменения не могут привести к возникновению молекулярного спектра, а вторую можно не учитывать, если не рассматривать сверхтонкую структуру спектральных линий. Отношения Еэл : Екол : Евращ = 1 :   : т/М, где т — масса электрона, М — величина, имеющая порядок массы ядер атомов в молекуле, т/М»10–5¸10–3. Поэтому Еэл >> Екол >> Евращ. Доказано, что Еэл»1¸10 эВ, Екол»10–2¸10–1 эВ, Евращ »10–5¸10–3 эВ.

Каждая из входящих в выражение (230.1) энергий квантуется (ей соответствует набор дискретных уровней энергии) и определяется квантовыми числами. При переходе из одного энергетического состояния в другое поглощается или испускается энергия DE=hn. При таких переходах одновременно изменяются энергия движения электронов, энергии колебаний н вращения. Из теории и эксперимента следует, что расстояние между вращательными уровнями энергии DEвращ гораздо меньше расстояния между колебательными уровнями DEкол которое, в свою очередь, меньше расстояния между электронными уровнями DEэл. На рис. 308 схематически представлены уровни энергии двухатомной молекулы (для примера рассмотрены только два электронных уровня — показаны жирными линиями).

Как будет показано в § 231, структура энергетических уровней молекул определяет их спектр излучения, возникающий при квантовых переходах между соответствующими энергетическими уровнями.

Молекулярные спектры. Комбинационное рассеяние света

Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах — спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами отбора (так, например, изменение квантовых чисел, соответствующих как колебательному, так и вращательному движению, должно быть равно ± 1).

Итак, при разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, могут соответствовать переходам с одного электронного уровня на другой (электронные спектры) или с одного колебательного (вращательного) уровня на другой (колебательные (вращательные) спектры). Кроме того, возможны и переходы с одними значениями DEкол и DEвращ на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры. Поэтому спектр молекул довольно сложный.

Типичные молекулярные спектры — полосатые, представляющие собой совокупность более или менее узких полос в ультрафиолетовой, видимой и инфракрасной областях. Применяя спектральные приборы высокой разрешающей способности, можно видеть, что полосы представляют собой настолько тесно расположенные линии, что они с трудом разрешаются. Структура молекулярных спектров различна для разных молекул и с увеличением числа атомов в молекуле усложняется (наблюдаются лишь сплошные широкие полосы). Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов (при колебательных и вращательных переходах отсутствует изменение дипольного момента, что является необходимым условием отличия от нуля вероятности перехода).

В 1928 г. академики Г. С. Ландсберг (1890—1957) и Л. И. Мандельштам и одновременно индийские физики Ч. Раман (1888—1970) и К. Кришнан (р. 1911) открыли явление комбинационного рассеяния света. Если на вещество (газ, жидкость, прозрачный кристалл) падает строго монохроматический свет, то в спектре рассеянного света помимо несмещенной спектральной линии обнаруживаются новые линии, частоты которых представляют собой суммы или разности частоты n падающего света и частот ni собственных колебаний (или вращений) молекул рассеивающей среды.

Линии в спектре комбинационного рассеяния с частотами n –ni , меньшими частоты n падающего света, называются стоксовыми (или красными) спутниками, линии с частотами n +ni , большими n, —антистоксовыми (или фиолетовыми) спутниками. Анализ спектров комбинационного рассеяния приводит к следующим выводам: 1) линии спутников располагаются симметрично по обе стороны от несмещенной линии; 2) частоты ni не зависят от частоты падающего на вещество света, а определяются только рассеивающим веществом, т. е. характеризуют его состав и структуру; 3) число спутников определяется рассеивающим веществом; 4) интенсивность антистоксовых спутников меньше интенсивности стоксовых и с повышением температуры рассеивающего вещества увеличивается, в то время как интенсивность стоксовых спутников практически от температуры не зависит.

Объяснение закономерностей комбинационного рассеяния света дает квантовая теория. Согласно этой теории, рассеяние света есть процесс, в котором один фотон поглощается и один фотон испускается молекулой. Если энергии фотонов одинаковы, то в рассеянном свете наблюдается несмещенная линия. Однако возможны процессы рассеяния, при которых энергии поглощенного и испущенного фотонов различны. Различие энергии фотонов связано с переходом молекулы из нормального состояния в возбужденное (испущенный фотон будет иметь меньшую частоту — возникает стоксов спутник) либо из возбужденного состояния в нормальное (испущенный фотон будет иметь большую частоту — возникает антистоксов спутник).

Рассеяние света сопровождается переходами молекулы между различными колебательными или вращательными уровнями, в результате чего и возникает ряд симметрично расположенных спутников. Число спутников, таким образом, определяется энергетическим спектром молекул, т. е. зависит только от природы рассеивающего вещества. Так как число возбужденных молекул гораздо меньше, чем число невозбужденных, то интенсивность антистоксовых спутников меньше, чем стоксовых. С повышением температуры число возбужденных молекул растет, в результате чего возрастает и интенсивность антистоксовых спутников.

Молекулярные спектры (в том числе и спектры комбинационного рассеяния света) применяются для исследования строения и свойств молекул, используются в молекулярном спектральном анализе, лазерной спектроскопии, квантовой электронике и т. д.

Гармонические колебания.

Волны в упругой среде

Основные законы и формулы

1. Уравнение гармонических колебаний:

,

где х – смещение колеблющейся точки от положения равновесия, t – время, А – амплитуда колебаний,  – круговая (или циклическая) частота,  – начальная фаза колебаний, () – фаза колебаний в момент времени t.

2. Круговая (циклическая) частота колебаний:

или

,

где  – частота колебаний, Т – период колебаний.

3. Скорость точки, совершающей гармонические колебания:

.

4. Ускорение при гармоническом колебании:

.

5. Полная энергия колеблющейся точки:

.

6. Период колебаний:

а) тела, подвешенного на пружине,

,

где m – масса тела, k – жесткость пружины.

Формула справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (при малой массе пружины в сравнении с массой тела).

б) математического маятника

,

где l – длина маятника, g – ускорение свободного падения;

в) физического маятника

,

где J – момент инерции колеблющегося тела относительно оси колебаний, а – расстояние центра тяжести маятника от оси колебаний,  – приведенная длина физического маятника.

7. Скорость  распространения волны, длина волны , частота v (или период Т) связаны соотношениями:

,

.

8. Уравнение бегущей волны:

,

где у – смещение точки, имеющей координату х, х – расстояние точки от источника колебаний (координата).

9. Разность фаз колебаний двух точек среды, расстояние между этими точками и длина волны связаны соотношением:

.

Пример 22. При определении периода полураспада T1/2 короткоживущего радиоактивного изотопа использован счетчик импульсов. За время ∆t = 1 мин в начале наблюдения (t=0) было насчитано ∆n1=250 импульсов, а по истечении времени t=1 ч - ∆n2=92 импульса. Определить постоянную радиоактивного распада λ и период полураспада T1/2 изотопа.

Решение. Число импульсов ∆n, регистрируемых счетчиком за время ∆t, пропорционально числу распавшихся атомов ∆N.

Таким образом, при первом измерении

∆n1=k∆N1=kN1(1-e–λ∆t), (1)

где N1— количество радиоактивных атомов к моменту начала отсчета; k — коэффициент пропорциональности (постоянный для данного прибора и данного расположения прибора относительно радиоактивного изотопа).

При повторном измерении (предполагается, что расположение приборов осталось прежним)

∆n2=k∆N2=kN2(1-e–λ∆t), (2)

где N2— количество радиоактивных атомов к моменту начала второго измерения.

Разделив соотношение (1) на выражение (2) и приняв во внимание, что по условию задачи ∆t одинаково в обоих случаях, а также что N1 и N2. связаны между собой соотношением N2 = N1 e-λt, получим

∆n1/∆n2=eλt (3)

где t — время, прошедшее от первого до второго измерения. Для вычисления l выражение (3) следует прологарифмировать: In(∆n1/∆n2)=λt, откуда

λ = (1/t)×ln(∆n1/∆n2).

Подставив числовые данные, получим постоянную радиоактивного распада, а затем и период полураcпада:

λ = (1/1)×ln(250/92)ч-1 = 1ч-1;

T1/2 = ln2/λ = 0,693/1 = 0,693ч = 41,5 мин.


Методы наблюдения и регистрации радиоактивных излучений и частиц