Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Элементы квантовой статистики

Квантовая статистика. Фазовое пространство. Функция распределения

Квантовая статистика — раздал статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.

В отличие от исходных положений классической статистической физики, в которой тождественные частицы различимы (частицу можно отличить от всех таких же частиц), квантовая статистика основывается на принципе неразличимости тождественных частиц (см. § 226). При этом оказывается, как будет показано ниже, что коллективы частиц с целым и полуцелым спинами подчиняются разным статистикам.

Пусть система состоит из N частиц. Введем в рассмотрение многомерное пространство всех координат и импульсов частиц системы. Тогда состояние системы определяется заданием 6N переменных, так как состояние каждой частицы определяется тройкой координат х, у, z и тройкой соответствующих проекций импульса рх, ру, pz. Соответственно число «взаимно перпендикулярных» координатных осей данного пространства равно 6N. Это 6N-мерное пространство называется фазовым пространством. Каждому микросостоянию системы отвечает точка в 6N-мерном фазовом пространстве, так как задание точки фазового пространства означает задание координат и импульсов всех частиц системы. Разобьем фазовое пространство на малые 6N-мерные элементарные ячейки объемом dqdp=dq1dq2...dq3Ndp1dp2...dp3N, где q — совокупность координат всех частиц, р — совокупность проекций их импульсов. Корпускулярно-волновой дуализм свойств вещества (см. § 213) и соотношение неопределенностей Гейзенберга (см. § 215) приводят к выводу, что объем элементарной ячейки (он называется фазовым объемом) не может быть меньше чем h3 (h — постоянная Планка).

Вероятность dW данного состояния системы можно представить с помощью функции распределения f(q, p):

 (234.1)

Здесь dW—вероятность того, что точка фазового пространства попадет в элемент фазового объема dqdp, расположенного вблизи данной точки q, р. Иными словами, dW представляет собой вероятность того, что система находится в состоянии, в котором ее координаты и импульсы, заключены в интервале q, q+dq и р, p+dp.

Согласно формуле (234.1), функция распределения есть не что иное, как плотность вероятности определенного состояния системы. Поэтому она должна быть нормирована на единицу:

где интегрирование производится по всему фазовому пространству.

Зная функцию распределения f(q, р), можно решить основную задачу квантовой статистики — определить средние значения величин, характеризующих рассматриваемую систему. Среднее значение любой функции

 (234.2)

Если иметь дело не с координатами и импульсами, а с энергией, которая квантуется, то состояние системы характеризуется не непрерывной, а дискретной функцией распределения.

Явное выражение функции распределения в самом общем виде получил американский физик Д. Гиббс (1839—1903). Оно называется каноническим распределением Гиббса. В квантовой статистике каноническое распределение Гиббса имеет вид

  (234.3)

где А — постоянная, определяемая из условия нормировки к единице, n — совокупность всех квантовых чисел, характеризующих данное состояние. Подчеркнем, что f(Еn) есть именно вероятность данного состояния, а не вероятность того, что система имеет определенное значение энергии Еn, так как данной энергии может соответствовать не одно, а несколько различных состояний (может иметь место вырождение).

Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

Одним из важнейших «объектов» изучения квантовой статистики, как и классической, является идеальный газ. Это связано с тем, что во многих случаях реальную систему можно в хорошем приближении считать идеальным газом. Состояние системы невзаимодействующих частиц задается с помощью так называемых чисел заполнения Ni — чисел, указывающих степень заполнения квантового состояния (характеризуется данным набором i квантовых чисел) частицами системы, состоящей из многих тождественных частиц. Для систем частиц, образованных бозонами — частицами с нулевым или целым спином (см. § 226), числа заполнения могут принимать любые целые значения: 0, 1, 2, ... (см. § 227). Для систем частиц, образованных фермионами — частицами с полуцелым спином (см. § 226), числа заполнения могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых (см. § 227). Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т. е. определить средние числа заполнения áNiñ.

Идеальный газ из бозонов — бозе-газ — описывается квантовой статистикой Бозе — Эйнштейна.* Распределение бозонов по энергиям вытекает из так называемого большого канонического распределения Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым (см. § 227):

  (235.1)

* Ш. Бозе (1894—1974) — индийский физик.

Это распределение называется распределением Бозе — Эйнштейна. Здесь áNiñ — среднее число бозонов в квантовом состоянии с энергией Ei, k — постоянная Больцмана, Т—термодинамическая температура, m —химический потенциал; m не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех áNiñ равна полному числу частиц в системе. Здесь m £ 0, так как иначе среднее число частиц в данном квантовом состоянии отрицательно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.

Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака.* Распределение фермионов по энергиям имеет вид

 (235.2)

где áNiñ — среднее число фермионов в квантовом состоянии с энергией Еi, m — химический потенциал. В отличие от (235.1) m может иметь положительное значение (это не приводит к отрицательным значениям чисел áNiñ). Это распределение называется распределением Ферми — Дирака.

* Э. Ферми (1901—1954) — итальянский физик.

Если >>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:

  (235.3)

(ср. с выражением (44.4)), где

  (235.4)

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Система частиц называется вырожденной, если ее свойства существенным образом отличаются от свойств систем, подчиняющихся классической статистике. Поведение как бозе-газа, так и ферми-газа отличается от классического газа, они являются вырожденными газами. Вырождение газов становится существенным при весьма низких температурах и больших плотностях. Параметром вырождения называется величина А. При А<<1,т. е. при малой степени вырождения, распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана (235.3).

Температурой вырождения Т0 называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц, т. е. Т0 — температура, при которой вырождение становится существенным. Если Т >> Т0, то поведение системы частиц (газа) описывается классическими законами.

Пример 5. Определить расстояние от центра Земли до искусственного спутника и скорость его относительно поверхности Земли, если спутник запущен так, что он движется в плоскости земного экватора и с Земли все время кажется неподвижным.

Решение. С достаточной степенью точности можно считать, что на спутник при его движении действует только сила земного притяжения:

где m – масса спутника; М – масса Земли; R – расстояние от центра Земли до спутника.

Под действием этой силы спутник, равномерно движется по окружности с ускорением поэтому  где  – скорость спутника. Учитывая, что можно записать:

Поскольку спутник с Земли все время кажется неподвижным, то где Т – период суточного вращения Земли ( Т=24 ч). Поэтому

откуда

.

Определим скорость движения спутника:

13. Плоская световая волна (λ=0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметром d=1 см. На каком расстоянии b от отверстия должна находиться точка наблюдения, чтобы отверстие открывало: 1) одну зону Френеля? 2) Две зоны Френеля?

14. На щель шириной, а=0,05 мм падает нормально монохроматический свет (λ=0,6 мкм). Определить угол между первоначальным направлением пучка света и направлением на четвертую темную дифракционную полоску.

15. Вследствие изменения температуры абсолютно черного тела максимум спектральной плотности энергетической светимости сместился с 24000 Å на 8000 Å. Как и во сколько раз изменились энергетическая светимость тела и максимальное значение спектральной плотности энергетической светимости?

16. Температура абсолютно черного тела равна 2000 К. Определить: 1) спектральную плотность энергетической светимости для длины волны λ=6000 Å; 2) энергетическую светимость в интервале длин волн от 5900 Å до 6100 Å. Принять, что среднее значение спектральной плотности энергетической светимости тела в этом интервале равно значению, найденному для длины волны 6000 Å.

17. Энергия, излучаемая через смотровое окошко печи за время t=5 с, равна W. Площадь окошка равна S=5,5 см2, максимум в спектре излучения приходится на длину волны λ=1,6 мкм. Определить энергию W.

18. Модель абсолютно черного тела – полость с малым круглым отверстием диаметром d=1,5 см. Нагрев производится электрической спиралью, потребляющей ток I=35 мА при напряжении U=220 В, причем некоторая доля энергии р рассеивается стенками полости. Равновесная температура излучения, исходящего из отверстия, равна Т=870 К. Определить энергию р.

19. Какое количество энергии излучает в течении суток каменное оштукатуренное здание общей поверхностью 1000 м2, если коэффициент поглощения (поглощательная способность) при этом 0,8 и температура излучающей поверхности 0°С.

20. Стальная болванка, температура которой 727°С, излучает за 1с 4 Дж энергии с поверхности 1 см2. Определить коэффициент поглощения (поглощательную способность) болванки при данной температуре, считая, что он одинаков для всех волн.

21. 1) Найти насколько уменьшится масса Солнца за год вследствие излучения? 2) Считая излучение Солнца постоянным, найти за какое время масса Солнца уменьшится вдвое. Температуру поверхности Солнца принять равной 5800 К.

22. Поверхность тела нагрета до температуры 1000 К. Затем одна половина этой поверхности нагревается на 100 К, а другая охлаждается на 100 К. Во сколько раз изменится энергетическая светимость поверхности этого тела?

23. Температура абсолютно черного тела изменилась при нагревании от 1000 К до 3000 К. 1) Во сколько раз увеличилась при этом его энергетическая светимость? 2) Насколько изменилась при этом длина волны, на которую приходится максимум спектральной плотности энергетической светимости?

3) Во сколько раз увеличилась его максимальная спектральная плотность энергетической светимости?

24. Поток монохроматического излучения (λ=500 нм) падает нормально на плоскую зеркальную поверхность и давит на нее с силой 10-8 Н. Определить число фотонов, ежесекундно падающих на эту поверхность.

25. Параллельный пучок монохроматических лучей (λ=662 нм) падает на зачерненную поверхность и производит на нее давление Н/м2. Определить концентрацию фотонов в световом пучке.

26. Длина волны λ фотона равна комптоновской длине волны электрона. Определить энергию Е и импульс фотона р.


Методы наблюдения и регистрации радиоактивных излучений и частиц