Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Вырожденный электронный газ в металлах

Распределение электронов по различным квантовым состояниям подчиняется принципу Паули (см. § 227), согласно которому в одном состоянии не может быть двух одинаковых (с одинаковым набором четырех квантовых чисел) электронов, они должны отличаться какой-то характеристикой, например направлением спина. Следовательно, по квантовой теории, электроны в металле не могут располагаться на самом низшем энергетическом уровне даже при 0 К. Согласно принципу Паули, электроны вынуждены взбираться вверх «по энергетической лестнице».

Электроны проводимости в металле можно рассматривать как идеальный газ, подчиняющийся распределению Ферми — Дирака (235.2). Если m0 — химический потенциал электронного газа при Т=0 К, то, согласно (235.2), среднее число áN(E)ñ электронов в квантовом состоянии с энергией Е равно

 (236.1)

Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов áN(E)ñ =f(E), где f(E) — функция распределения электронов по состояниям.

Из (236.1) следует, что при T=0 К функция распределения áN(E)ñ = 1, если E<m0, и áN(E)ñ = 0, если Е>m0. График этой функции приведен на рис. 312, а. В области энергий от 0 до m0 функция áN(E)ñ равна единице. При E=m0 она скачкообразно изменяется до нуля. Это означает, что при Т=0 К все нижние квантовые состояния, вплоть до состояния с энергией E=m0, заполнены электронами, а все состояния с энергией, большей m0, свободны. Следовательно, m0 есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта максимальная кинетическая энергия называется энергией Ферми и обозначается ЕF (ЕF=m0). Поэтому распределение Ферми — Дирака обычно записывается в виде

  (236.2)

Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна «потенциальной ямы», как это делалось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых электронами энергетических уровней.

Для металлов при не слишком высоких температурах выполняется неравенство kT<<EF. Это означает, что электронный газ в металлах практически всегда находится в состоянии сильного вырождения. Температура Т0 вырождения (см. § 235) находится из условия kT0=EF. Она определяет границу, выше которой квантовые эффекты перестают быть существенными. Соответствующие расчеты показывают, что для электронов в металле T0»104 К, т. с. для всех температур, при которых металл может существовать в твердом состоянии, электронный газ в металле вырожден.

При температурах, отличных от 0 К, функция распределения Ферми — Дирака (236.2) плавно изменяется от 1 до 0 в узкой области (порядка kT) в окрестности ЕF (рис. 312, б). (Здесь же для сравнения пунктиром приведена функция распределения при T=0 К.) Это объясняется тем, что при T>0 небольшое число электронов с энергией, близкой к ЕF, возбуждается вследствие теплового движения и их энергия становится больше ЕF. Вблизи границы Ферми при Е< ЕF заполнение электронами меньше единицы, а при Е> ЕF — больше нуля. В тепловом движении участвует лишь небольшое число электронов, например при комнатной температуре Т»300 К и температуре вырождения T0=3×104 К, — это 10–5 от общего числа электронов.

Если (Е–ЕF)>>kТ («хвост» функции распределения), то единицей в знаменателе (236.2) можно пренебречь по сравнению с экспонентой и тогда распределение Ферми — Дирака переходит в распределение Максвелла — Больцмана. Таким образом, при (Е–ЕF)>>kT, т.е. при больших значениях энергии, к электронам в металле применима классическая статистика, в то же время, когда (Е–ЕF)<<kT, к ним применима только квантовая статистика Ферми — Дирака.

Понятие о квантовой теории теплоемкости. Фононы

Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности, двухатомных) от температуры (см. § 53). Согласно квантовой механике, энергия вращательного движения молекул и энергия колебаний атомов в молекуле могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии (kT<<DE), то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно одноатомному.

Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между колебательными, т. е. DEвращ<<DEкол (см. § 230), то с ростом температуры возбуждаются вначале вращательные степени свободы, в результате чего теплоемкость возрастает; при дальнейшем росте температуры возбуждаются и колебательные степени свободы и происходит дальнейший рост теплоемкости (см. рис. 80).

Функции распределения Ферми — Дирака для T=0 К и T>0 заметно различаются (рис. 312) лишь в узкой области энергий (порядка kT). Следовательно, в процессе нагревания металла участвует лишь незначительная часть всех электронов проводимости. Этим и объясняется отсутствие заметной разницы между теплоемкостями металлов и диэлектриков, что не могло быть объяснено классической теорией (см. § 103).

Как уже указывалось (см. § 73), классическая теория не смогла объяснить также зависимость теплоемкости твердых тел от температуры, а квантовая статистика решила эту задачу. Так, А. Эйнштейн, приближенно считая, что колебания атомов кристаллической решетки независимы (модель кристалла как совокупности независимых колеблющихся с одинаковой частотой гармонических осцилляторов), создал качественную квантовую теорию теплоемкости кристаллической решетки. Она впоследствии была развита П. Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми (рассмотрел непрерывный спектр частот гармонических осцилляторов).

Рассматривая непрерывный спектр частот осцилляторов, П. Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания низких частот, соответствующих упругим волнам. Поэтому тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно-волновому дуализму свойств вещества, упругим волнам в кристалле сопоставляют фононы, обладающие энергией Е=. Фонон есть квант энергии звуковой волны (так как упругие волны — волны звуковые). Фононы являются квазичастицами — элементарными возбуждениями, ведущими себя подобно микрочастицам. Аналогично тому как квантование электромагнитного излучения привело к представлению о фотонах, квантование упругих волн привело к представлению о фононах.

Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (например, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке — он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

Энергия кристаллической решетки рассматривается как энергия фононного газа, подчиняющегося статистике Бозе — Эйнштейна (см. § 235), так как фононы являются бозонами (их спин равен нулю). Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным; поэтому в формуле (235.1) для фононов необходимо m положить равным нулю.

Применение статистики Бозе — Эйнштейна к фононному газу — газу из невзаимодействующих бозе-частиц — привело П. Дебая к количественному выводу, согласно которому при высоких температурах, когда T>>TD (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти (см. § 73), а при низких температурах, когда T<<TD (квантовая область), — пропорциональна кубу термодинамической температуры: СV~Т3. В данном случае TD — характеристическая температура Дебая, определяемая соотношением kТD=, где  —предельная частота упругих колебаний кристаллической решетки. Таким образом, теория Дебая объяснила расхождение опытных и теоретических (вычисленных на основе классической теории) значений теплоемкости твердых тел (см. § 73 и рис. 113).

Модель квазичастиц — фононов — оказалась эффективной для объяснения открытого П. Л. Капицей явления сверхтекучести жидкого гелия (см. § 31, 75). Теория сверхтекучести, созданная (1941) Л. Д. Ландау и развитая (1947) российским ученым Н. Н. Боголюбовым (р. 1909), применена впоследствии к явлению сверхпроводимости (см. § 239).

Пример 6. Сравнить ускорение свободного падения у поверхности Луны с ускорением свободного падения у поверхности Земли.

Решение. На тело массой m вблизи поверхности Земли и Луны будут действовать соответственно силы:

где – гравитационная постоянная; MЗ и MЛ – массы соответственно Земли и Луны; RЗ и RЛ – радиусы Земли и Луны. Эти силы будут сообщать телу соответствующие ускорения свободного падения:

поэтому

откуда

1.5 Работа, энергия, мощность

Основные законы и формулы

1.Работа постоянной силы F

,

где S – модуль перемещения; - угол между векторами силы F и перемещения S.

Если на тело действуют несколько сил, каждая из которых совершает над ним работу, то вся произведенная работа равна алгебраической сумме работ отдельных сил:

.

2.Мощность, развиваемая постоянной силой F, определяется формулой:

или ,

где А – работа, совершенная за время t; – скорость движения.

3.Кинетическая энергия тела массой m, движущегося со скоростью :

Формулы для потенциальной энергии имеют различный вид в зависимости от характера действующих сил.

4.Потенциальная энергия тела массой m, поднятого на высоту h относительно земли,

.

5.Потенциальная энергия упруго деформированного тела

,

где  – коэффициент упругости; х – величина деформации.

6.Полная механическая энергия системы тел равна арифметической сумме кинетических и потенциальных энергий всех тел, входящих в данную систему:

7.Работа постоянного момента силы, действующего на вращающееся тело:

где  – угол поворота тела.

8.Мгновенная мощность, развиваемая при вращении тела,

.

9.Кинетическая энергия вращающегося тела:

.

27. Во сколько раз энергия фотона (λ=550 нм) больше средней кинетической энергии поступательного движения молекулы кислорода при комнатной температуре Т=20 °С?

28. Определить поверхностную плотность потока энергии излучения I, падающего на зеркальную поверхность, если световое давление при перпендикулярном падении лучей равно р=10 мкПа.

29. Поток энергии, излучаемый электрической лампой, равен Фе=600 Вт. На расстоянии r=1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d=2 см. Принимая, что излучение лампы одинаково во всех направлениях и что зеркальце полностью отражает падающий на него свет, определить силу светового давления F на зеркальце.

30. На зеркальце с идеально отражающей поверхностью площадью S=1,5 см2 падает нормально свет от электрической дуги. Определить импульс р, полученный зеркальцем, если поверхностная плотность потока излучения, падающего на зеркальце равна I=0,1 МВт/м2. Продолжительность облучения t=1 c.

31. Определить энергию Е и импульс р фотона, которому соответствует длина волны λ=380 нм (фиолетовая граница видимого спектра).

32. Определить длину волны λ и импульс р фотона с энергией Е=1 МэВ.

33. Давление монохроматического света (λ=600 нм) на черную поверхность, расположенную перпендикулярно падающим лучам, равно р=0,1 мкПа. Определить число фотонов N, падающих за время t=1 c на поверхность площадью S=1 см2.

34. Монохроматическое излучение с длиной волны λ=500 нм падает нормально на плоскую зеркальную поверхность и давит на нее с силой F=10 нН. Определить число фотонов N, ежесекундно падающих на эту поверхность.

35. Определить давление солнечных лучей нормально падающих на зеркальную поверхность. Интенсивность солнечного излучения принять равной 1,37 кВт/м2.

36. Плотность потока энергии в импульсе излучения лазера может достигать значения 1,3∙1020 Вт/м2. Определить давление такого излучения, нормально падающего на черную поверхность.

37. Свет с длиной волны λ=500 нм нормально падает на зеркальную поверхность и производит на нее давление р=4 мкПа. Определить число фотонов, ежесекундно падающих на 1 см2 этой поверхности.

38. На платиновую пластинку падают ультрафиолетовые лучи. Для прекращения фотоэффекта нужно приложить задерживающую разность потенциалов 3,7 В. Если платиновую пластинку заменить пластинкой из другого металла, то задерживающую разность потенциалов нужно увеличить до 6 В. Определить работу выхода электронов с поверхности этой пластинки.

39. На цинковую пластинку падает монохроматический свет длиной волны λ=2200 Å. Определить максимальную скорость фотоэлектронов.

40. Красная граница фотоэффекта для металла с работой выхода А соответствует длине волны λ0. При освещении поверхности металла излучением длиной волны λ=0,14 мкм максимальная скорость фотоэлектронов равна υ=1300 км/с. Определить работу выхода А.

41. При поочередном освещении поверхности некоторого металла светом с длинами волн λ1=0,35 мкм и λ2=0,54 мкм обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в n=2 раза. Найти работу выхода с поверхности этого металла.

42. Красная граница фотоэффекта рубидия 810 нм. Какую обратную разность потенциалов нужно приложить к фотоэлементу, чтобы задержать электроны, испускаемые рубидием под действием ультрафиолетовых лучей длиной волны 100 нм?

43. При падении излучения с длиной волны λ на пластинку из металла с красной границей фотоэффекта λ1=0,35 мкм, задерживающее напряжение для фотоэлектронов равно U1=1,4 В, а при падении на пластинку с красной границей λ2=0,45 мкм оно равно U2. Определить U2.


Методы наблюдения и регистрации радиоактивных излучений и частиц