Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Примесная проводимость полупроводников

Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники — примесными полупроводниками. Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефектами типа избыточных атомов (по сравнению со стехиометрическим составом), тепловыми (пустые узлы или атомы в междоузлиях) и механическими (трещины, дислокации и т. д.) дефектами. Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 106 раз.

Примесную проводимость полупроводников рассмотрим на примере Ge и Si, в которые вводятся атомы с валентностью, отличной от валентности основных атомов на единицу. Например, при замещении атома германия пятивалентным атомом мышьяка (рис. 319, а) один электрон не может образовать ковалентной связи, он оказывается лишним и может быть легко при тепловых колебаниях решетки отщеплен от атома, т. е. стать свободным. Образование свободного электрона не сопровождается нарушением ковалентной связи; следовательно, в отличие от случая, рассмотренного в § 242, дырка не возникает. Избыточный положительный заряд, возникающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может.

С точки зрения зонной теории рассмотренный процесс можно представить следующим образом (рис. 319, б). Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии DED=0,013 эВ. Так как DED<kT, то уже при обычных температурах энергия теплового движения достаточна для того, чтобы перебросить электроны примесного уровня в зону проводимости; образующиеся при этом положительные заряды локализуются на неподвижных атомах мышьяка и в проводимости не участвуют.

Таким образом, в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов, носителями тока являются электроны; возникает электронная примесная проводимость (проводимость n-типа). Полупроводники с такой проводимостью называются электронными (или полупроводниками n-типа). Примеси, являющиеся источником электронов, называются донорами, а энергетические уровни этих примесей — донорными уровнями.

Предположим, что в решетку кремния введен примесный атом с тремя валентными электронами, например бор (рис. 320, а). Для образования связей с четырьмя ближайшими соседями у атома бора не хватает одного электрона, одна из связей остается неукомплектованной и четвертый электрон может быть захвачен от соседнего атома основного вещества, где соответственно образуется дырка. Последовательное заполнение образующихся дырок электронами эквивалентно движению дырок в полупроводнике, т. е. дырки не остаются локализованными, а перемещаются в решетке кремния как свободные положительные заряды. Избыточный же отрицательный заряд, возникающий вблизи атома примеси, связан с атомом примеси и по решетке перемещаться не может.

По зонной теории, введение трехвалентной примеси в решетку кремния приводит к возникновению в запрещенной зоне примесного энергетического уровня А, не занятого электронами. В случае кремния с примесью бора этот уровень располагается выше верхнего края валентной зоны на расстоянии DEA=0,08 эВ (рис. 320, б). Близость этих уровней к валентной зоне приводит к тому, что уже при сравнительно низких температурах электроны из валентной зоны переходят на примесные уровни и, связываясь с атомами бора, теряют способность перемещаться по решетке кремния, т. е. в проводимости не участвуют. Носителями тока являются лишь дырки, возникающие в валентной зоне.

Таким образом, в полупроводниках с примесью, валентность которой на единицу меньше валентности основных атомов, носителями тока являются дырки; возникает дырочная проводимость (проворность p-типа). Полупроводники с такой проводимостью называются дырочными (или полупроводниками p-типа). Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами, а энергетические уровни этих примесей — акцепторными уровнями.

В отличие от собственной проводимости, осуществляющейся одновременно электронами и дырками, примесная проводимость полупроводников обусловлена в основном носителями одного знака: электронами—в случае донорной примеси, дырками — в случае акцепторной. Эти носители тока называются основными. Кроме основных носителей в полупроводнике имеются и неосновные носители: в полупроводниках n-типа — дырки, в полупроводниках p-типа — электроны.

Наличие примесных уровней в полупроводниках существенно изменяет положение уровня Ферми ЕF. Расчеты показывают, что в случае полупроводников n-типа уровень Ферми ЕF0 при 0 К расположен посередине между дном зоны проводимости и донорным уровнем (рис. 321), С повышением температуры все большее число электронов переходит из донорных состояний в зону проводимости, но, помимо этого, возрастает и число тепловых флуктуаций, способных возбуждать электроны из валентной зоны и перебрасывать их через запрещенную зону энергий. Поэтому при высоких температурах уровень Ферми имеет тенденцию смещаться вниз (сплошная кривая) к своему предельному положению в центре запрещенной зоны, характерному для собственного полупроводника.

Уровень Ферми в полупроводниках р-типа при 0 К ЕF0 располагается посередине между потолком валентной зоны и акцепторным уровнем (рис. 322). Сплошная кривая опять-таки показывает его смещение с температурой. При температурах, при которых примесные атомы оказываются полностью истощенными и увеличение концентрации носителей происходит за счет возбуждения собственных носителей, уровень Ферми располагается посередине запрещенной зоны, как в собственном полупроводнике.

Проводимость примесного полупроводника, как и проводимость любого проводника, определяется концентрацией носителей и их подвижностью. С изменением температуры подвижность носителей меняется по сравнительно слабому степенному закону, а концентрация носителей — по очень сильному экспоненциальному закону, поэтому проводимость примесных полупроводников от температуры определяется в основном температурной зависимостью концентрации носителей тока в нем. На рис. 323 дан примерный график зависимости ln g от 1/T для примесных полупроводников. Участок AB описывает примесную проводимость полупроводника. Рост примесной проводимости полупроводника с повышением температуры обусловлен в основном ростом концентрации примесных носителей. Участок ВС соответствует области истощения примесей (это подтверждают и эксперименты), участок CD описывает собственную проводимость полупроводника.

Пример 5. Спутник вращается вокруг Земли по круговой орбите радиусом r. В какой пропорции сообщенная ему при запуске энергия поделилась между потенциальной и кинетической энергиями?

Решение. Считая, что спутник движется по круговой орбите, его кинетическую энергию можно определить по формуле

,

где m – масса спутника;  – его скорость; R – радиус Земли.

Если выбрать начало отсчета потенциальной энергии на бесконечности, то на поверхности Земли , а на орбите .

Следовательно, при выводе спутника на орбиту ему была сообщена потенциальная энергия

.

Искомое отношение энергий выразится следующим образом:

.

Пример 6. Подъемный кран за время ч поднимает строительные материалы массой т на высоту м. Определить мощность двигателя подъемного крана, если его коэффициент полезного действия .

Решение. Подъемный кран, поднимая груз на высоту h, увеличивает его потенциальную энергию. Работа А, совершаемая двигателем подъемного крана, идет на подъем груза и на работу против сил трения в механизмах.

Полезная работа Ап двигателя равна увеличению потенциальной энергии груза:

,

где g – ускорение свободного падения.

Коэффициент полезного действия  равен отношению полезной мощности NП ко всей потребляемой мощности N:

 . (1)

Учитывая, что , запишем выражение (1) в виде

.

Мощность двигателя равна

 . (2)

Вычислим искомую мощность двигателя:

ВткВт.

Пример 2. В колбе вместимостью V=0,5 л находится кислород при нормальных условиях. Определить среднюю энергию  поступательного движения всех молекул, содержащихся в колбе.

Решение. Средняя энергия поступательного движения всех молекул может быть выражена соотношением

, (1)

где <eп>— средняя энергия поступательного движения одной молекулы; N — число всех молекул, содержащихся в колбе.

Как известно,

, (2)

где k — постоянная Больцмана; Т — термодинамическая температура.

Число молекул, содержащихся в колбе, найдем по формуле

N=vNA, (3)

где v — количество вещества кислорода; NA — постоянная Авогадро.

Количество вещества v найдем из таких соображений: известно, что при нормальных условиях молярный объем Vm равен 22,4×10-3 м3/моль. Так как, по условию задачи, кислород в колбе находится при нормальных условиях, то количество вещества кислорода в колбе выражается соотношением

v=V/Vm. (4)

Подставив выражение v по (4) в (3), получим

N=VNA/Vm.  (5)

С учетом (2) и (5) выражение (1) энергии поступательного движения молекул примет вид

Проверим, дает ли правая часть расчетной формулы единицу энергии (джоуль). Для этого вместо символов величин подставим единицы, в которых эти величины выражаются:

.

Подставив значения величин в (6) и произведя вычисления, найдем

.


Методы наблюдения и регистрации радиоактивных излучений и частиц