Атомная физика Постулаты Бора Элементы квантовой статистики Полупроводники Элементы физики твердого тела Полупроводниковые диоды и триоды Ядерная физика Ядерные реакции Цепная реакция деления

Лекции и задачи по физике Примеры решений контрольной работы

Спин ядра и его магнитный момент

Использование приборов высокой разрешающей способности и специальных источников возбуждения спектра позволило обнаружить сверхтонкую структуру спектральных линий. Ее существование В. Паули объяснил (1924) наличием у атомных ядер собственного момента импульса (спина) и магнитного момента.

Собственный момент импульса ядра — спин ядра — складывается из спинов нуклонов и из орбитальных моментов импульса нуклонов (моментов импульса, обусловленных движением нуклонов внутри ядра). Обе эти величины являются векторами, поэтому спин ядра представляет их векторную сумму. Спин ядра квантуется по закону

где I — спиновое ядерное квантовое число (его часто называют просто спином ядра), которое принимает целые или полуцелые значения 0, , 1, , ... . Ядра с четными А имеют целые I, с нечетными — полуцелые I.

Атомное ядро кроме спина обладает магнитным моментом рmя. Магнитный момент ядра связан со спином ядра (см. аналогичное выражение (131.5) для электрона): pmя=gяLя, где gя — коэффициент пропорциональности, называемый ядерным гиромагнитным отношением.

Единицей магнитных моментов ядер служит ядерный магнетон

 (253.1)

где тp — масса протона (ср. эту формулу с магнетоном Бора (§ 131)). Ядерный магнетон в mp/me»1836 раз меньше магнетона Бора, поэтому магнитные свойства атомов определяются в основном магнитными свойствами его электронов.

В случае эффекта Зеемана (см. § 223) при помещении атома в магнитное поле наблюдается расщепление энергетических уровней и спектральных линий (тонкая структура), обусловленное спин-орбитальным взаимодействием электронов. Во внешнем магнитном поле также наблюдается расщепление уровней энергии атома на близко расположенные подуровни (сверхтонкая структура), обусловленное взаимодействием магнитного момента ядра с магнитным полем электронов в атоме.

Магнитные моменты ядер могут, таким образом, определяться спектроскопическим методом по сверхтонкой структуре спектральных линий. Однако магнитные моменты ядер примерно на три порядка меньше магнитных моментов электронов (см. (253.1) и (§ 131)), поэтому расщепление спектральных линий, соответствующее сверхтонкой структуре, значительно меньше расщепления за счет взаимодействия между спиновым и орбитальным моментами электрона (тонкая структура). Таким образом, из-за малости эффекта, даже при использовании спектральных приборов очень большой разрешающей способности, точность этого метода невелика. Поэтому были разработаны более точные (не оптические) методы определения магнитных моментов ядер, одним из которых является метод ядерного магнитного резонанса.

Явление ядерного магнитного резонанса заключается в следующем: если на вещество, находящееся в сильном постоянном магнитном поле, действовать слабым переменным радиочастотным магнитным полем, то при частотах, соответствующих частотам переходов между ядерными подуровнями, возникает резкий (резонансный) максимум поглощения. Ядерный магнитный резонанс обусловлен происходящими под влиянием переменного магнитного поля квантовыми переходами между ядерными подуровнями. Точность метода задается точностью измерения напряженности постоянного магнитного поля и резонансной частоты, так как по их значениям вычисляются магнитные моменты ядер. Так как для измерения этих величин применяются прецизионные методы, то рmя можно определять с высокой точностью (до шести знаков).

Метод ядерного магнитного резонанса позволяет наблюдать ядерный резонанс на ядрах, обладающих магнитным моментом порядка 0,1mя. Количество вещества, необходимое для измерений, должно составлять 10–3—10 г (в зависимости от значения рmя). Измерение значений магнитных моментов ядер часто сводится к сравнению резонансных частот исследуемых ядер с резонансной частотой протонов, что позволяет освободиться от точной калибровки магнитного поля, которая является довольно трудоемкой.

Ядерные силы. Модели ядра

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами.

С помощью экспериментальных данных по рассеянию нуклонов на ядрах, ядерным превращениям и т.д. доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий.

Перечислим основные свойства ядерных сил:

1) ядерные силы являются силами притяжения;

2) ядерные силы являются короткодействующими — их действие проявляется только на расстояниях примерно 10–15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;

3) ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;

4) ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;

5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа Н) только при условии параллельной ориентации их спинов;

6) ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.

Сложный характер ядерных сил и трудность точного решения уравнений движения всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел) не позволили до настоящего времени разработать единую последовательную теорию атомного ядра. Поэтому на данной стадии прибегают к рассмотрению приближенных ядерных моделей, в которых ядро заменяется некоторой модельной системой, довольно хорошо описывающей только определенные свойства ядра и допускающей более или менее простую математическую трактовку. Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две: капельную и оболочечную.

1. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами — молекулами в жидкости и нуклонами в ядре, — являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре. Наконец, объем капли, так же как и объем ядра (см. (251.1)), пропорционален числу частиц. Существенное отличие ядра от капли жидкости в этой модели заключается в том, что она трактует ядро как каплю электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной), подчиняющуюся законам квантовой механики. Капельная модель ядра позволила получить полуэмпирическую формулу для энергии связи нуклонов в ядре, объяснила механизм ядерных реакций и особенно реакции деления ядер. Однако эта модель не смогла, например, объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.

2. Оболочечная модель ядра (1949—1950; американский физик М. Гепперт-Майер (1906—1975) и немецкий физик X. Иенсен (1907—1973)). Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Такие особо устойчивые (магические) ядра действительно существуют (см. § 252).

Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств. Эта модель особенно хорошо применима для описания легких и средних ядер, а также для ядер, находящихся в основном (невозбужденном) состоянии.

По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и другие модели.

Пример 3. Через какой промежуток времени после начала колебаний смещение точки из положения равновесия будет равно половине амплитуды, если период колебания 24 с, начальная фаза равна нулю?

Решение. Запишем уравнение гармонического колебания

.

По условию задачи, , или, сокращая на А,

,

т.к. функция sin а принимает значение, равное ½, если аргумент функции а равен , т.е. , следовательно

; .

Пример 4. Поперечная волна распространяется вдоль упругого шнура со скоростью 15 м/с. Период колебания точек шнура 1,2 с, амплитуда колебания 2 см. Определить длину волны, фазу и смещение точки, отстоящей на 45 м от источника колебаний, через 4 с.

Решение. Определим длину волны:

; м =18 м.

Фаза и смещение любой точки могут быть найдены из уравнения волны:

.

Фаза колебаний равна аргументу синуса в уравнении волны:

;

 рад.

Смещение точки

 м.

Энергия электрического поля

Энергия взаимодействия электрических зарядов

,

где ji – потенциал, создаваемый всеми зарядами, кроме i–го, в точке нахождения заряда q.

Энергия заряженного конденсатора (системы заряженных проводников)

.

Энергия электрического поля заряженного плоского конденсатора

,

где V = S×d – объем пространства между обкладками конденсатора; E – напряженность электрического поля; d – расстояние между пластинами конденсатора; S – площадь одной из пластин конденсатора.

Объемная плотность энергии однородного электрического поля – энергия единицы объема электрического поля:

.

Объемная плотность энергии однородного электрического поля в диэлектрике

,

где слагаемое  – объемная плотность энергии электрического поля в вакууме; слагаемое  – объемная плотность энергии электрического поля, затраченная на поляризацию диэлектрика.

Энергия электрического поля (в том числе и неоднородного)

.

Механические силы, действующие на макроскопические заряженные тела:

.

Основные уравнения электростатики в вакууме

Закон сохранения заряда в интегральной форме:

,

где r – объемная плотность заряда; j – вектор плотности тока;


Голые зрелые
Методы наблюдения и регистрации радиоактивных излучений и частиц