Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Уравнение Бернулли и следствия из него

Выделим в стационарно текущей идеальной жидкости (физическая абстракция, т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями S1 и S2, по которой слева направо течет жидкость (рис. 47). Пусть в месте сечения S1 скорость течения v1, давление p1 и высота, на которой это сечение расположено, h1. Аналогично, в месте сечения S2 скорость течения v2, давление p2 и высота сечения h2. За малый промежуток времени Dt жидкость перемещается от сечения S1 к сечению , от S2 к .

Согласно закону сохранения энергии, изменение полной энергии E2—E1 идеальной несжимаемой жидкости должно быть равно работе А внешних сил по перемещению массы m жидкости:

E2 – E1 = А, (30.1)

где E1 и E2 — полные энергии жидкости массой m в местах сечений S1 и S2 соответственно.

С другой стороны, А — это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями S1 и S2, за рассматриваемый малый промежуток времени Dt. Для перенесения массы m от S1 до  жидкость должна переместиться на расстояние l1=v1Dt и от S2 до  — на расстояние l2=v2Dt. Отметим, что l1 и l2 настолько малы, что всем точкам объемов, закрашенных на рис. 47, приписывают постоянные значения скорости v, давления р и высоты h. Следовательно,

А = F1l1 + F2l2, (30.2)

где F1=p1S1 и F2= – p2S2 (отрицательна, так как направлена в сторону, противоположную течению жидкости; рис. 47).

Полные энергии E1 и E2 будут складываться из кинетической и потенциальной энергий массы m жидкости:

  (30.3)

 (30.4)

Подставляя (30.3) и (30.4) в (30.1) и приравнивая (30.1) и (30.2), получим

  (30.5)

Согласно уравнению неразрывности для несжимаемой жидкости (29.1), объем, занимаемый жидкостью, остается постоянным, т. е.

Разделив выражение (30.5) на DV, получим

где р — плотность жидкости. Но так как сечения выбирались произвольно, то можем записать

  (30.6)

Выражение (30.6) выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико.

Величина р в формуле (30.6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина rv2/2 — динамическим давлением. Как уже указывалось выше (см. § 28), величина rgh представляет собой гидростатическое давление.

Для горизонтальной трубки тока (h1 =h2) выражение (30.6) принимает вид

  (30.7)

где p+rv2/2 называется полным давлением.

Из уравнения Бернулли (30.7) для горизонтальной трубки тока и уравнения неразрывности (29.1) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис. 48). В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.

Так как динамическое давление связано со скоростью движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис. 49). Прибор состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру. С помощью одной из трубок измеряется полное давление (р0), с помощью другой — статическое (р). Манометром измеряют разность давлений:

  (30.8)

где ро — плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статического давлений равна динамическому давлению:

  (30.9)

Из формул (30.8) и (30.9) получаем искомую скорость потока жидкости:

Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис. 50). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст. =133,32 Па).

Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис. 51).

Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h2 выхода ее из отверстия) и напишем уравнение Бернулли:

Так как давления р1 и р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. р1=р2, то уравнение будет иметь вид

Из уравнения неразрывности (29.1) следует, что v2/v1=S1/S2, где S1 и S2 — площади поперечных сечений сосуда и отверстия. Если S1>>S2, то членом v/2 можно пренебречь и

Это выражение получило название формулы Торричелли.*

* Э. Торричелли (1608—1647) — итальянский физик и математик.

Теория волнового притяжения, на примере пульсирующих в несжимаемом эфире шаров была впервые разработана в ХIХ веке норвежским математиком Бьеркнесом и изложена в частности в работах Г.А. Лоренца и А. Тимирязева [51]. Следует отметить, что Бьеркнес рассматривал простую пульсацию — периодическое изменение шара по радиусу на величину AR и, в частности, получил следующее уравнение для взаимодействующих шаров:

X = –2πρcc'n2cos(ε – ε')/l2, (3.18)

где п = 2πω.

Даже поверхностное сопоставление показывает, что уравнение (3.15) по своей структуре весьма напоминает уравнение (3.18). Однако ясно, что пульсация гравиполя вещественных тел значительно сложнее тех пульсаций, которые рассматривал Бьеркнес. Похоже, оно включает кроме переменного изменения радиуса и вращение как гравитационного, так и электромагнитного полей тел и всех элементарных частиц, являясь основой вращения тел в космосе и спиновых эффектов в микромире.

Бьеркнес не ограничивался теоретическим рассмотрением пульсирующего взаимодействия шаров, но и пытался, в силу своих возможностей, проводить эксперименты по их взаимному притяжению за счет пульсации в жидкости. А. Тимирязев так описывает его попытки [51]:

«Эти гидродинамические силы притяжения и отталкивания были теоретически изучены Бьеркнесом-старшим, и, как указывается в его биографии, он долго пытался найти способ проверить эти результаты на опыте, но вследствие полного отсутствия соответствующей лабораторной обстановки, вынужден был прибегнуть к следующему любопытному приему. Он бросал два деревянных крокетных шара в большой сосуд с водой. Если шары падали одновременно и с одной и той же высоты, то они начинали колебаться на поверхности воды, поднимаясь и погружаясь в воду в одной и той же фазе, - при этом оба шара плыли друг к другу навстречу вследствие возникших, благодаря движению жидкости сил притяжения. Если же бросить с высот одновременно оба шара и добиться колебаний на поверхности жидкости с противоположной фазой, то получается отталкивание: шары расходятся в разные стороны (курсив мой – А. Ч.).

Это были первые опыты, подтвердившие замечательную теорию Бьеркнеса-старшего. Бьеркнес младший подверг теорию широкой экспериментальной проверке, подтвердив все ее выводы, и, кроме того, внес в теорию существенные добавления. Так он изучал взаимодействие вращающихся в жидкости твердых цилиндров и показал, что для них имеют место те же законы, которые были открыты для электрического тока Ампером и Био-Саваром».

Следует отметить, что гипотеза волнового характера притяжения между телами, распространяемая Бьеркнесом и на гравитацию, не получила признания у физической общественности. И не потому, что она неверна. И не потому, что эксперименты не подтвердили ее. Как раз с эмпирическим доказательством было все в порядке. А потому, что и тогда и сейчас существует укоренившееся еще со времен Галилея и Ньютона представление о самонеподвижности «мертвых» тел. Для истинного физика камень, кусок металла или любое тело (кроме живого) самонеподвижны. Они не могут, не имеют права пульсировать. По современным представлениям непрерывная самопульсация тел просто невозможна. Для этого необхо-димо постоянное возобновление энергии. А потому, и снова и снова, тело в принципе не должно пульсировать.

То, что самопульсация, как и масса, объем, энергия, сила и т.д., изначально присущи всем телам от электронов и атомов до звезд и галактик, не может являться аргументом для физиков до тех пор, пока не будет найден механизм возобновления энергии. Но для нахождения этого механизма его надо искать, а не отрицать наличие самопульсации у всех тел. А чтобы искать, необходимо изучать природные явления, связанные с «беспричинным» образованием волн и волновых процессов, как в микромире, так и в космосе. Ведь не случайно открытие в начале 70-х годов самопульсации Солнца с периодом 160 мин (которое так и не признали самопульсацией) повергло в такой шок всю физическую науку, от которого она еще не оправилась. Объяснение этой пульсации, похоже, отсутствует до сих пор. (Логика проста. Если Солнце пульсирует с данной частотой, то в его недрах не может протекать термоядерная реакция, а, следовательно, не должно быть и светового излучения. Но Солнце светит — значит, не пульсирует.)

А между тем, величину, близкую указанному периоду Т, получить достаточно просто, зная круговую частоту ω = 6,27∙10-4 (табл. 5). Отсюда приведенный период τ = 1595 сек. Период же Т = 2πτ = 10021 сек или 167 мин. И это без учета собственного вращения Земли и Солнца. (Аналогичные периоды вычислил В.А. Марков для Солнца и Земли в [52].)

Похоже, впервые на существование постоянной «беспричинной» незатухающей самопульсации ω электрона буквально наткнулся П. Дирак, работая с релятивистскими уравнениями:

ω = 4πmс2/h.

Он назвал появление ω независимым дрожанием свободного неподвижного электрона (т.е. по П. Дираку электрон обладает свойством самодрожания, что аналогично самопульсации или самодвижению) И, по-видимому, не поверив в возможность самодрожания, скромно упомянул об этом в работе [53]. Физики же, не допуская бесконечной траты энергии на дрожание без ее возобновления и учитывая отсутствие вещества для передачи дрожания (эфир был уже запрещен ОТО), предпочли не заметить фундаментального открытия П. Дирака. Тем более что экспериментального подтверждения именно этого явления не последовало, а постоянно фиксируемое самодрожание электронов и «физического вакуума» до сих пор остается «незаконным» в рамках квантовой физики.

Нахождение зависимости (2.47) становится веским аргументом для проведения и объяснения экспериментов, подтверждающих самопульсацию тел, как описанных в данной работе, так и многих других, до сих пор не имеющих однозначного объяснения (например, Этвиша, Стокса, Адельбергера, Стейси, Тибергера и др.)

Свободные оси

Определение. Ось вращения тела, положение которой в пространстве остаётся неизменным без действия на неё внешних сил, называется свободной.

Можно доказать, что в любом теле существует три взаимно перпендикулярных оси, проходящие через центр масс тела, которые могут служить свободными осями. Они называются главными осями инерции тела. Например, главные оси инерции однородного прямоугольного параллелепипеда проходят через центры противоположных граней. Вращение вокруг главных осей с наибольшим и наименьшим (экстремальными) моментами инерции оказывается устойчивым, а вращение вокруг оси со средним моментом – неустойчивым. Этот факт является достаточно важным при проектировании конструкций с вращающимися частями.

4. Момент силы. Пусть О – какая-либо точка, относительно которой рассматривается момент вектора силы. Обозначим  радиус-вектор, проведённый из этой точки к точке приложения силы  (Рис. 3.8).

Рис. 3.8

Определение. Моментом силы  относительно точки О называется векторное произведение радиуса-вектора на силу :

Подпись:

Раскрывая векторное произведение, получим  где  плечо силы (длина перпендикуляра, опущенного из точки О на линию действия силы).

В соответствии с определением векторного произведения вектор  направлен перпендикулярно плоскости, в которой лежат векторы  и  в соответствии с правилом правого винта (буравчика).

Определение. Момент силы относительно оси , проходящей через точку О, есть проекция на эту ось вектора момента силы  относительно точки, лежащей на этой же оси.

Подпись:

 как проекция на ось является скалярной величиной.


Элементы специальной (частной) теории относительности