Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Элементы специальной (частной) теории относительности

Преобразования Галилея. Механический принцип относительности

В классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета.

Для его доказательства рассмотрим две системы отсчета: инерциальную систему K (с координатами х, у, z), которую условно будем считать неподвижной, и систему K' (с координатами x', у', z'), движущуюся относительно K равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени t расположение этих систем друг относительно друга имеет вид, изображенный на рис. 58. Скорость u направлена вдоль OO', радиус-вектор, проведенный из О в О', r0=ut.

Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что

  (34.1)

Уравнение (34.1) можно записать в проекциях на оси координат:

  (34.2)

Уравнения (34.1) и (34.2) носят название преобразований координат Галилея.

В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид

В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение:

 (34.3)

Записанные соотношения справедливы лишь в случае классической механики (u<<с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца* (§ 36).

* Х. Лоренц (1853—1928) — нидерландский физик-теоретик.

Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение

  (34.4)

которое представляет собой правило сложения скоростей в классической механике.

Ускорение в системе отсчета К

Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково:

  (34.5)

Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инерциальной (точка движется относительно нее равномерно и прямолинейно или покоится).

Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

Постулаты специальной (частной) теории относительности

Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (v<<с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скорости их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) — опыт Майкельсона — Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показывали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.

Одновременно было показано противоречие между классической теорией и уравнениями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в основе понимания света как электромагнитной волны.

Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v<<с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.

Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами.

В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, являясь тем самым обоснованием постулатов Эйнштейна — обоснованием специальной теории относительности.

Естественно, что, обладая направленной системой мышления и пройдя школу механицизма и теории относительности, ученые не могли предвидеть возможности проведения таких экспериментов, но могли наткнуться на них случайно. Именно такая случайность произошла с группой английских исследователей, проводивших эксперименты по подтверждению теории относительности [126]. То, что произошло в результате, хорошо описано у В.Н. Демиденко [127]:

«... В 1961 г. Чампни и Мун решили подтвердить поперечный эффект Доплера с помощью нового метода — эффекта Месбауэра. Они расположили приемник и источник фотонов на противоположных концах диаметра ротора (рис. 76, а). В роторе было просверлено сквозное отверстие, где фотоны могли бы путешествовать.

Так как источник двигался относительно приемника под прямым углом, то по теории относительности здесь должен был бы наблюдаться поперечный эффект — красное смещение — уменьшение частоты волны. Однако эффект оказался нулевым.

Американские физики Хей, Шиффер, Креншоу, Эгелфаст решили выяснить, а что будет, если источник поместить в центре ротора? Появился эффект, истолкованный как красное смещение (1962 г.). Кондиг повышает точность эксперимента и обнаруживает странное расползание резонансной линии, но сам эффект опять считается красным смещением.

Рис. 76, а-в

Наконец годом позже (в 1969 году) Чампни, Иссаак и Кан произвели предварительный сдвиг резонансных линий. Для этого они нанесли источник гамма квантов — радиоактивные атомы железа на пластинчатую основу — мягкую медь и вновь замерили эффект. Источник был в центре ротора (рис. 76, б). Когда ротор привели во вращение, то неожиданно для экспериментаторов резонансная линия поползла в сторону фиолетового смещения. Резонансные линии источника и приемника совместились, а затем разошлись. Сомнений быть не могло. Наблюдался не красный, а фиолетовый сдвиг. Результат был настолько ошеломляющим, что заметка о нем была предельно краткой. Никаких выводов не делалось (курсив мой – А.Ч.), а приводились лишь данные экспериментов».

Ничего удивительного: искали подтверждение теории относительности, а получили подтверждение существования эфира (в период, когда он однозначно отсутствовал по постулату), выраженное в форме локализации гравитационного поля. И хотя исследователи не исключали возможности существования эфира, в этой конкретной постановке эксперимента его наличие не предполагалось. И снова мировоззрение, вслед за Саньяком, помешало сделать открытие локализации гравиполя. Кстати, анализируя эффект группы Чампни, некоторые ученые несколько позднее предположили, что в данном случае имеет место локализация гравиполя [128]. Но к ним не прислушались.

Занимаясь изучением экспериментов с прохождением лучей света во вращающемся полом диске, В.И. Демиденко в следующей работе [129] нашел объяснение опытам английской группы исследователей: «... Пусть на окружности вращающегося ротора находится приемник. Фотон налетает на него, в результате чего импульс фотона относительно приемника увеличивается, происходит векторное сложение двух импульсов. Обнаруживается фиолетовый сдвиг частоты. Если же вращается источник, то масса виртуального фотона, который может быть испущен, находится в движении, обладая начальным импульсом. В процессе излучения этот импульс векторно отнимается от квантового импульса фотона (импульс излучения), и в результате приемник, находящийся в центре ротора, регистрирует уменьшение энергии и частоты приходящих фотонов — красное смещение (рис. 76, в)».

Это объяснение может считаться подтверждением теории относительности. Но, рассматривая источник и приемник фотонов в движении с ротором, В. Демиденко упустил вариант, по которому и источник и приемник могут быть неподвижными, а ротор вращающимся. В этом случае ударное увеличение и уменьшение импульса фотона будет отсутствовать, а красное или фиолетовое смещение останется. Что тогда? Ведь эта постановка эксперимента не предусматривается ОТО. Схема (рис. 77) соответствующего эксперимента аналогична схеме 75 проведения опыта Саньяка с использованием полого вращающего диска с неподвижной коробкой в нем. Места крепления источника света и приемника переносятся с обода диска А на неподвижную основу коробки В, заключенную внутри диска А в условиях вакуума. Если при движении от неподвижного источника 1 к неподвижному приемнику 2 и при движении от неподвижного источника 3 к неподвижному приемнику 4 частота фотонов останется неизменной как при вращении диска А, так и при его покое, то справедлива гравитационная теория А. Эйнштейна.

Если же при неподвижных источниках и приемниках света и вращающемся диске А частота фотонов в направлении 1-2 будет иметь фиолетовое смеще-ние, а в направлении 3-4 красное смещение, то это будет свидетельствовать в пользу гравитационной теории Г. Лоренца,

подтверждать существование Рис. 77 механического эфира и образова-ние в полости вращающегося ротора локального гравитационного поля.

Физический смысл момента инерции. Момент инерции во вращательном движении играет такую же роль, как масса при поступательном движении, характеризует меру инертности тела при вращательном движении. Чем больше момент инерции тела, тем труднее при прочих равных условиях привести его во вращательное движение. Момент инерции определяется не только массой, но и тем, как эта масса распределена относительно оси вращения.

Соотношение  является приближённым, причём тем более точным, чем меньше элементарные массы . Задача нахождения моментов инерции сводится к интегрированию.

Подпись:

(Интегрирование ведётся по всей массе тела ).


Элементы специальной (частной) теории относительности