Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Интервал между событиями

Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разнос. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной физической величины, не зависящей от системы отсчета, т. е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами (х, у, z, t), такой физической величиной является интервал между двумя событиями:

  (38.1)

где  — расстояние между точками трехмерного пространства, в которых эти события произошли. Введя обозначение t12 = t2 – t1, получим

Покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив Dt = t2 – t1, Dx = x2 – x1, Dy = y2 – y1 и Dz = z2 – z1, выражение (38.1) можно записать в виде

Интервал между теми же событиями в системе К' равен

  (38.2)

Согласно преобразованиям Лоренца (36.3),

Подставив эти значения в (38.2), после элементарных преобразований получим, что  т. е.

Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.

Теория относительности, таким образом, сформулировала новое представление о пространстве и времени. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея — Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи — пространство-время. Пространство и время не существуют вне материи и независимо от нее.

Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т. е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

Основной закон релятивистской динамики материальной точки

Масса движущихся релятивистских частиц зависит от их скорости:

  (39.1)

где m0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в вакууме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Из принципа относительности Эйнштейна (см. § 35), утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона

оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.

Основной закон релятивистской динамики материальной точки имеет вид

  (39.2)

или

 (39.3)

где

  (39.4)

— релятивистский импульс материальной точки.

Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньютоновской механики (6.7). Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (39.4). Таким образом, уравнение (39.2) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.

В силу однородности пространства (см. § 9) в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.

Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости с, уравнение (39.2) переходит в основной закон (см. (6.5)) классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v<<c. Законы классической механики получаются как следствие теории относительности для предельного случая v<<c (формально переход осуществляется при с®¥). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).

Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем (см. § 116) будет показано, что на основании этой зависимости производятся расчеты ускорителей.

Математически можно оперировать бесчисленным множеством пространств, если исходить из того, что расстояние есть самонеподвижная данность, получаемая посредством измерения промежутков между самонеподвижными телами или их частями неким стандартным измерительным инструментом. И, пользуясь таким инструментом и постулатом о самонеподвижности тел, можно получить множество механик с великолепным математическим аппаратом, начиная с механики И. Ньютона, способных рассчитывать множество факторов, и не имеющих никакого отношения к природным явлениям.

Однако для понимания структуры пространства того факта, что оно имеет три измерения, недостаточно. Трехмерность пространства подтверждает и то, что в каждой его области имеется множество выделенных пульсирующих точек — центров ячеек, структурирующих вещественное пространство вокруг себя, и отгораживая его от соседнего пространства, непреодолимой для них нейтральной зоной. И то, что к центру каждой ячейки вещественная плотность пространства возрастает. И то обстоятельство, что с возрастанием этой плотности количественные величины всех параметров пространства и тел, находящихся в нем, изменяются. И изменяются таким образом, что мыслящие существа, например, на планетах некоторой звездной системы считают эти параметры одинаковыми для всех планет (в частности аналогичного мнения придерживаются земляне).

Следует отметить, что наличие множества точек-центров пространства и неоднородная плотность вещества в объеме обусловливают прохождение по нему множества различных колебаний и как следствие изменение по объему всех физических размеров и в том числе постоянной π. И это изменение плотности, вызывающее изменение постоянной π, можно принять за количественное отображение плотностной пространственной мерности. То есть принятая в физике трехмерность отображает не многомерность пространства n, а его равновеликую (приблизительно) мерность по координатным осям. Естественно, что изменение плотности пространства и тел (деформация) происходит в различных областях с неодинаковой скоростью и на различные величины. Но оно не меняет физической сущности пространства и во всех направлениях от центра имеет характер приращения ±∆. И, потому относительно координат становятся безразмерными коэффициентами различной по объему гравитационной деформации. Именно по этой причине оси трёх направлений пространства имеют одинаковую мерность в пространстве объема, но по направлениям каждой из осей х, у, z, начиная от нулевой точки, ¾ не на равную величину. Однако это неравенство на эквипотенциальной поверхности сопровождается настолько незначительным изменением мерного инструмента, что в практике нами не регистрируется, но наличествует и имеет, например, существенное значение для оси z.

Другое дело в мировом космическом пространстве или пространстве микромира. Поскольку структура этих пространств одинакова и отличается только количественной величиной динамической плотности пространственных областей, и в космосе и в молекулах переход из одной плотности пространства (одной мерности) в другую плотность (другую мерность) должен сопровождаться качественным скачком с явной или неявной границей, отграничивающей одно пространство от другого. Наличие такой границы фиксируется и в космосе (например, центральная прозрачная область Галактики, как известно, плотное вещество), и на поверхности Земли (переход от качественно отличающегося по плотности космического пространства к пространству глубин Земли имеет своей границей поверхность последней), и в микромире. Так, постоянная тонкой структуры α = 137, вероятно, сигнализирует о такой границе в структуре атома, так же как и величина 1836, которую мы принимаем за отношение массы протона к массе электрона.

Тонкий однородный стержень

Дано: масса стержня, длина стержня.

Найти:  (момент инерции относительно оси ОО, проходящей через конец стержня перпендикулярно ему) (рис. 3.5).

 

Рис. 3.5

Ввиду одномерного характера задачи выражение  можно заменить на , где , тогда .

Подпись:

Теорема Штейнера (без вывода)

Подпись:  
Рис. 3.6
Постановка задачи. Известен момент инерции произвольного тела массой  относительно оси, проходящей через его центр тяжести  (рис. 3.6). Требуется найти, каков момент инерции  относительно какой-либо оси , параллельной первой и находящейся на расстоянии  от неё.

Теорема. Момент инерции тела относительно произвольной оси z равен сумме момента инерции относительно оси, проходящей через центр масс тела С и параллельной данной, и произведения массы тела на квадрат расстояния между осями a:

.


Элементы специальной (частной) теории относительности