Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Закон взаимосвязи массы и энергии

Найдем кинетическую энергию релятивистской частицы. Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:

 (40.1)

Учитывая, что dr = v dt, и подставив в (40.1) выражение (39.2), получаем

Преобразовав данное выражение с учетом того, что vdv = vdv, и формулы (39.1), придем к выражению

  (40.2)

т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.

Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя m0, то, проинтегрировав (40.2), получим

  (40.3)

или кинетическая энергия релятивистской частицы имеет вид

  (40.4)

Выражение (40.4) при скоростях v«c переходит в классическое:

(разлагая в ряд  при v<<c, правомерно пренебречь членами второго порядка малости).

А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы Dm сопровождается изменением полной энергии частицы,

  (40.5)

Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:

  (40.6)

Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — закон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.

Закон (40.6) можно, учитывая выражение (40.3), записать в виде

откуда следует, что покоящееся тело (T=0) также обладает энергией

называемой энергией покоя. В классической механике энергия покоя Е0 не учитывается, считая, что при v=0 энергия покоящегося тела равна нулю.

В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы:

  (40.7)

Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко воем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса

  (40.8)

и, наоборот, со всякой массой связана энергия (40.6).

Чтобы охарактеризовать прочность связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия связи системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы

  (40.9)

где m0i — масса покоя i-й частицы в свободном состоянии; М0 — масса покоя системы, состоящей из п частиц.

Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.

Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.

Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временны2е промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временны2х соотношений движущейся материи.

Задачи

7.1. Определить собственную длину стержня (длину, измеренную в системе, относительно которой стержень покоится), если в лабораторной системе (системе отсчета, связанной с измерительными приборами) его скорость v = 0,8 с, длина l = 1 м и угол между ним и направлением движения q = 30°.

7.2. Собственное время жизни частицы отличается на 1,5% от времени жизни по неподвижным часам. Определить b = v/с. [0,172]

7.3. Тело, масса покоя которого 2 кг, движется со скоростью 200 Мм/с в системе K', перемещающейся относительно системы К со скоростью 200 Мм/с. Определить: 1) скорость тела относительно системы К; 2) его массу в этой системе. [1) 277 Мм/с; 2) 5,2 кг]

7.4. Воспользовавшись тем, что интервал — инвариантная величина по отношению к преобразованиям координат, определить расстояние, которое пролетел p-мезон с момента рождения до распада, если время его жизни в этой системе отсчета Dt = 5 мкс, а собственное время жизни (время, отсчитанное по часам, движущимся вместе с телом) Dt0 =2,2 мкс. [1,35 км]

7.5. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютоновский импульс в пять раз. [0,98 с]

7.6. Определить скорость, полученную электроном, если он прошел ускоряющую разность потенциалов 1,2 МэВ. [2,86 Мм/с]

7.7. Определить релятивистский импульс электрона, кинетическая энергия которого 1 ГэВ. [5,34×10–19 Н×с]

И, тем не менее, в своей правильной формулировке закон недостаточен. Механика Ньютона предполагает взаимодействие двух тел в момент удара или иного воздействия, когда тела относительно друг друга не движутся. Это уникальная и в общем правильная, но только мыслимая абстракция. Именно в этот единственный миг можно как бы абстрагироваться от пространства, считая его отсутствующим, что и следует из классической механики. В этот момент происходит взаимодействие как бы только двух тел, которые и относительно друг друга, и относительно пространства именно в данный момент неподвижны. В такой ситуации мыслимое действие одного тела равно противодействию другого.

Данное представление взаимодействия двух тел нельзя считать адекватным действительности. Оно исходит из существования и взаимодействия двух тел (так же как формулировка первого закона классической механики определяет существование одного объекта, а второго — тоже двух). Но в природе никогда не бывает одного объекта. Один объект — вымышленная, чисто умозрительная ситуация, предполагающая невещественность, пустоту простран-ства. За кадром (телом) всегда стоит вещественное пространство, и оно-то вносит свой вклад во все взаимодействия. Каждое тело в ускоренном движении сопровождает некоторая деформация и соответствующая его динамическим свойствам эфирная шуба. В момент взаимодействия происходит перераспределение их гравитационных деформаций, плотностей и конфигурации эфирных шуб. Именно этот процесс характеризует действие и противодействие, а в нем по классической механике не участвует вещественное эфирное пространство.

Когда миг взаимодействия или соударения пройдет и закончится процесс передеформации тел, картина действия и противодействия изменится. Тела либо разбегаются, и тогда третий закон механики не применим именно к этим телам, и в этом случае остается действие тел на пространство и противодействие последнего по тому же третьему закону, либо тела начинают двигаться совместно и с ускорением так, что одно ¾ движущее толкает другое ¾ движимое. Вот теперь в совместном движении и взаимодействии участвуют не менее трех тел. С одной стороны, два взаимодействующих тела — движущее и движимое со своими эфирными шубами, представляющими третье действующее тело, и четвертое тело ¾ движительное, т.е. то, от которого отталкивается тело движущее. Без наличия движительного тела всякое движение ¾ перемещение, кроме движения по инерции (т.е. мыслимого движения в отсутствии вещественного пространства), невозможно. Так паровоз (или, например, сопло, толкающее ракету), толкающий с ускорением вагон по горизонтальным рельсам, является движущим телом, вагон - движимым телом, а рельсы ¾ движительные тела. Процесс отталкивания от них и есть условие движения системы паровоз-вагон относительно третьей системы — эфирного гравиполя.

И вот при таком сложном движении третий закон механики абстрагируется от третьего и четвертого тел и рассматривает только взаимодействие между движущим и движимым телами, т.е. как бы образует из них самостоятельную систему. Такое абстрагирование и приводит якобы к нарушению третьего закона. Однако корректное описание взаимодействия тел допускает абстрагирование только от четвертого тела, которое заменяется некоторой силой, действующей в направлении движения и обеспечивающей процесс ускоренного передвижения системы трех тел. Тогда взаимодействующие тела образуют как бы самостоятельную, не зависящую от внешних факторов систему. Но эта «независимая» система никак не может быть независимой от гравитационных полей и от деформации в них при взаимодействиях (в частности в движении). Последнее, т.е. взаимодействие, будет происходить всегда при наличии третьего тела — эфира. И в этом взаимодействии между движущим и движимым телами будет оставаться равенство между действием и противодействием, и внешняя сила, приложенная телом, движущимся к телу движимому Fв = mвgв (сила сопротивления эфира), будет в точности равна силе сопротивления, обусловливающего деформацию тела движимого телу движущемуся, т.е. силе «инерции». Данное сопротивление пропорционально степенным свойствам тел и создается вещественным эфиром, относительно которого система взаимодействующих тел движется. Отсюда третий закон:

Взаимодействие тел в эфирном пространстве обусловливает им равное и противоположное противодействие.

Эфир — тот самый объект, который обеспечивает всеобщность третьего закона при всех взаимодействиях.

Пример применения теоремы Штейнера.

Требуется найти момент инерции тонкого однородного стержня массой   и длиной  относительно перпендикулярной к нему оси , проходящей через центр стержня (рис. 3.7).

Рис. 3.7

Решение:

Воспользуемся полученным ранее выражением для момента инерции стержня относительно оси, проходящей через его конец:

. Используя теорему Штейнера, получаем:

  отсюда .

Подпись:


Элементы специальной (частной) теории относительности