Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения

При выводе основного уравнения молекулярно-кинетической теории молекулам задавали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и направлению. Однако из-за хаотического движения молекул все направления движения являются равновероятными, т. е. в любом направлении в среднем движется одинаковое число молекул.

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой т0 в газе, находящемся в состоянии равновесия при Т= const. остается постоянной и равной

Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Этот закон теоретически выведен Дж. Максвеллом.

При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда

Применяя методы теории вероятностей. Максвелл нашел функцию f(v) — закон о распределеня молекул идеального газа по скоростям:

  (44.1)

Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).

График функции (44.1) приведен на рис. 65. Так как при возрастании v множитель exp[–m0v2/(2kT)] уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vB, и затем асимптотически стремится к нулю. Кривая несимметрична относительно vB.

Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь заштрихованной полоски на рис. 65. Площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Это означает, что функция f(v) удовлетворяет условию нормировки

Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью. Значение наиболее вероятной скорости можно найти продифференцировав выражение (44.1) (постоянные множители опускаем) по аргументу v, приравняв результат нулю и используя условие для максимума выражения f(v):

Значения v=0 и v=¥ соответствуют минимумам выражения (44.1), а значение v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vB:

 (44.2)

Из формулы (44.2) следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 66) сместится вправо (значение наиболее вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться.

Средняя скорость молекулы <v> (средняя арифметическая скорость) определяется по формуле

Подставляя сюда f(v) и интегрируя, получаем

  (44.3)

Скорости, характеризующие состояние газа: 1) наиболее вероятная  2) средняя   3) средняя квадратичная  (рис. 65). Исходя из распределения молекул по скоростям

  (44.4)

можно найти распределение молекул газа по значениям кинетической энергии e. Для этого перейдем от переменной v к переменной e=m0v2/2. Подставив в (44.4) v= и dv=de , получим

где dN(e) — число молекул, имеющих кинетическую энергию поступательного движения, заключенную в интервале от e до e + de.

Таким образом, функция распределения молекул по энергиям теплового движения

Средняя кинетическая энергия <e> молекулы идеального газа

т. е. получили результат, совпадающий с формулой (43.8).

Цикл Карно и его КПД для идеального газа.

Основываясь на втором начале термодинамики Карно доказал теорему: из всех периодически действующих машин, имеющих одинаковые температуры нагревателя и холодильника, большим коэффициентом полезного действия  обладают обратимые машины; при этом КПД этих машин одинаков и не зависит от конструкции и природы рабочего тела.

Карно придумал цикл , коэффициент полезного действия которого является наибольшим. Этот цикл получил название цикла Карно. Он состоит из двух адиабат (1-2,3-4) и двух изотерм (2-3,4-1).

Коэффициент полезного действия такого цикла, как показал Карно, определяется по формуле: , где Т1 – температура нагревателя, Т2 – температура холодильника.

Во второй теореме Карно доказал, что коэффициент полезного действия реальной машины, работающей с теми же нагревателем и холодильником всегда меньше этого значения. Формула Карно, таким образом, определяет максимальное значение коэффициента полезного действия теплового двигателя.

Теорема Карно послужила основанием для установления термодинамической шкалы температур. Из формул  и , следует, что . Для сравнения температур Т1 и Т 2 двух тел надо осуществить обратимый цикл Карно, в котором одно тело используется  в качестве нагревателя, а другое в качестве холодильника. Из полученного равенства следует, что отношение температур равно отношению количеств теплоты отданного в данном цикле к полученному в данном цикле.

При этом химический состав  рабочего тела не влияет на результат сравнения, поэтому такая температурная шкала не связана со свойствами веществ.

Фазовое пространство, фазовая точка, фазовая ячейка

Введём воображаемое шестимерное пространство, каждая точка которого характеризуется шестью координатами x, y, z, , , , где x, y, z – координаты, , ,  – соответствующие им проекции импульсов каждой молекулы. Такое пространство называется фазовым пространством молекул, а его точки – фазовыми точками.

 Таким образом, мгновенное состояние отдельной молекулы полностью характеризуется положением её фазовой точки в фазовом пространстве.

 Разобьём теперь всё фазовое пространство молекул на достаточно малые области с одинаковыми фазовыми объёмами. Такие области называются фазовыми ячейками (например, фазовая ячёйка может иметь форму бесконечно малого шестимерного прямоугольного параллелепипеда и иметь объём ).

 Примем произвольную точку пространства О за начало координат. Отложим от неё в какой-то момент времени t векторы скоростей всех молекул газа:   (рис. 8.3).

Концы этих векторов называются скоростными точками. Совокупность всех скоростных точек образуют 3-х мерное пространство, называемое пространством скоростей. Пространство скоростей является частным случаем фазового пространства. В пространстве скоростей можно ввести прямоугольные оси, по которым можно откладывать проекции , ,  вектора  на эти оси.

Рис. 8.3


Элементы специальной (частной) теории относительности