Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Вакуум и методы его получения. Свойства ультраразреженных газов

Если из сосуда откачивать газ, то по мере понижения давления число столкновений молекул друг с другом уменьшается, что приводит к увеличению их длины свободного пробега. При достаточно большом разрежении столкновения между молекулами относительно редки, поэтому основную роль играют столкновения молекул со стенками сосуда. Вакуумом называется состояние газа, при котором средняя длина свободного пробега <l> сравнима или больше характерного линейного размера d сосуда, в котором газ находится. В зависимости от соотношения <l> и d различают низкий (<l> << d), средний (<l> £ d), высокий (<l> > d) и сверхвысокий (<l> >> d) вакуум. Газ в состоянии высокого вакуума называется ультраразреженным.

Вопросы создания вакуума имеют большое значение в технике, так как, например, во многих современных электронных приборах используются электронные пучки, формирование которых возможно лишь в условиях вакуума. Для получения различных степеней разрежения применяются вакуумные насосы. В настоящее время применяются вакуумные насосы, позволяющие получить предварительное разрежение (форвакуум) до »0,13 Па, а также вакуумные насосы и лабораторные приспособления, позволяющие получить давление до 13,3 мкПа — 1,33 пПа (10–7 —10–14 мм рт. ст.).

Принцип работы форвакуумного насоса представлен на рис. 72. Внутри цилиндрической полости корпуса вращается эксцентрично насаженный цилиндр. Две лопасти 1 и 1', вставленные в разрез цилиндра и раздвигаемые пружиной 2, разделяют пространство между цилиндром и стенкой полости на две части. Газ из откачиваемого сосуда поступает в область 3, по мере поворачивания цилиндра лопасть 1 отходит, пространство 3 увеличивается и газ засасывается через трубку 4. При дальнейшем вращении лопасть 1' отключает пространство 3 от трубки 4 и начинает вытеснять газ через клапан 5 наружу. Весь процесс непрерывно повторяется.

Для получения высокого вакуума применяются диффузионные насосы (рабочее вещество — ртуть или масло), которые не способны откачивать газ из сосудов начиная с атмосферного давления, но способны создавать добавочную разность давлений, поэтому их употребляют вместе с форвакуумными насосами. Рассмотрим схему действия диффузионного насоса (рис. 73). В колбе ртуть нагревается, пары ртути, поднимаясь по трубке 1, вырываются из сопла 2 с большой скоростью, увлекая за собой молекулы газа из откачиваемого сосуда (в нем создан предварительный вакуум). Эти пары, попадая затем в «водяную рубашку», конденсируются и стекают обратно в резервуар, а захваченный газ выходит в пространство (через трубку 3), в котором уже создан форвакуум. Если применять многоступенчатые насосы (несколько сопл расположены последовательно), то реально при хороших уплотнениях можно с помощью них получить разрежение до 10–7 мм рт. ст.

Для дальнейшего понижения давления применяются так называемые «ловушки». Между диффузионным насосом и откачиваемым объектом располагают специально изогнутое колено (1 или 2) соединительной трубки (ловушку), которую охлаждают жидким азотом (рис. 74). При такой температуре пары ртути (масла) вымораживаются и давление в откачиваемом сосуде понижается приблизительно на 1—2 порядка. Описанные ловушки называют охлаждаемыми; можно применять также неохлаждаемые ловушки. Специальное рабочее вещество (например, алюмогель) помещают в один из отростков соединительной трубка вблизи откачиваемого объекта, которое поддерживается при температуре 300°С. При достижении высокого вакуума алюмогель охлаждается до комнатной температуры, при которой он начинает поглощать имеющиеся в системе пары. Преимущество этих ловушек состоит в том, что с их помощью в откачиваемых объектах можно поддерживать высокий вакуум уже после непосредственной откачки в течение даже нескольких суток.

Остановимся на некоторых свойствах ультраразреженных газов. Так как в состоянии ультраразрежения молекулы практически друг с другом не сталкиваются, то газ в этом состоянии не обладает внутренним трением. Отсутствие соударений между молекулами разреженного газа отражается также на механизме теплопроводности. Если при обычных давлениях перенос энергии молекулами производится «эстафетой», то при ультраразрежении каждая молекула сама должна перенести энергию от одной стенки сосуда к другой. Явление уменьшения теплопроводности вакуума при понижении давления используется на практике для создания тепловой изоляции. Например, для уменьшения теплообмена между телом и окружающей средой тело помещают в сосуд Дьюара*, имеющий двойные стенки, между которыми находится разреженный воздух, теплопроводность которого очень мала.

* Д. Дьюар (1842—1923) — английский химик и физик.

Рассмотрим два сосуда 1 и 2, поддерживаемых соответственно при температурах T1 и Т2 (рис. 75) и соединенных между собой трубкой. Если длина свободного пробега молекул гораздо меньше диаметра соединительной трубки (<l> << d), то стационарное состояние газа характеризуется равенством давлений в обоих сосудах (p1 = р2). Стационарное же состояние ультраразреженного газа (<l> >> d), находящегося в двух сосудах, соединенных трубкой, возможно лишь в том случае, когда встречные потоки частиц, перемещающихся из одного сосуда в другой, одинаковы, т. е.

где п1 и п2 — концентрации молекул в обоих сосудах, <v1> и <v2> — средние скорости молекул. Учитывая, что n = p/(kT) и  из условия (49.1) получаем

  (49.2)

т. е. в условиях высокого вакуума выравнивания давлении не происходит. Если в откачанный стеклянный баллон (рве. 76) на пружину 1 насадить слюдяной листочек 2, одна сторона которого зачернена, и освещать его, то возникнет разность температур между светлой и зачерненной поверхностями листочка. Из выражения (49.2) следует, что в данном случае разным будет и давление, т. е. молекулы от зачерненной поверхности будут отталкиваться с большей силой, чем от светлой, в результате чего листочек отклонится. Это явление называется радиометрическим эффектом. На радиометрическом эффекте основано действие радиометрического манометра.

Задачи

8.1. Начертить и объяснить графики изотермического и изобарного процессов в координатах p и V, p и T, T и V.

8.2. В сосуде при температуре t = 20°C и давлении р = 0,2 МПа содержится смесь газов — кислорода массой m1 =16 г и азота массой m2 = 21 г. Определить плотность смеси. [2.5 кг/м3]

8.3. Определить наиболее вероятную скорость молекул газа, плотность которого при давлении 40 кПа составляет 0,38 кг/м3. [478 м/с]

8.4. Используя закон о распределении молекул идеального газа по скоростям, найти закон, выражающий распределение молекул по относительным скоростям и (u = v/vB). []

8.5. Воспользовавшись законом распределения идеального газа по относительным скоростям (см. задачу 8.4), определить, какая доля молекул кислорода, находящегося при температуре t = 0°C, имеет скорости от 100 до 110 м/с. [0,4]

8.6. На какой высоте плотность воздуха в два раза меньше, чем его плотность на уровне моря? Считать, что температура воздуха везде одинакова и равна 273 К. [5,5 км]

8.7. Определить среднюю продолжительность свободного пробега молекул водорода при температуре 300 К и давлении 5 кПа. Эффективный диаметр молекул принять равным 0,28 нм. [170 нс]

8.8. Коэффициенты диффузии и внутреннего трения при некоторых условиях равны соответственно 1,42×10–4 м2/с и 8,5 мкПа×с. Определить концентрацию молекул воздуха при этих условиях. [1,25×1024 м–3]

Задачей данного учебного пособия является дать студентам технического вуза самые общие представления о связи механических и тепловых явлений в природе и о некоторых приложениях классической термодинамики к технически интересным вопросам.

Основой данного пособия послужила первая часть курса лекций «Термодинамика и статистическая физика», читавшегося автором на протяжении ряда лет в Московском государственном технологическом университете «СТАНКИН». Отбор материала определялся программой общего курса физики в технических вузах. В целях уменьшения объема пособия, в нем заметно сжат объем материала по сравнению с полным объемом курса за счет уменьшения числа примеров и задач, а также за счет отсутствия описания лекционных экспериментов и лабораторных работ, выполняемых студентами в процессе обучения.

Поскольку существует большое число ранее опубликованных другими авторами лекционных курсов и учебных пособий по термодинамике, то появление еще одного оправдано с точки зрения автора тем, что здесь нестандартно рассмотрен вопрос об энтропии. Особое внимание уделено разъяснению физического смысла энтропии – вопросу наиболее интересному в термодинамике и почему-то наименее понятно (во всяком случае, для начального ознакомления) излагаемому в учебниках по термодинамике. С этой целью (несколько упреждая вторую часть курса, статистическую) в ПРИЛОЖЕНИИ 3 рассмотрена связь между «эффективным» объемом, характеризующим фазовый портрет термодинамической системы в фазовом пространстве (определяемым статистически через дисперсию проекций координат и импульсов частиц системы) и степенью хаотичности состояния системы, измеряемой энтропией в термодинамике. 

Порядок изложения материала мало отличается от общепринятого в традиционных курсах феноменологической термодинамики. Отличительной чертой курса можно считать повышенное внимание к особенностям моделирования при изучении тепловых явлений (по сравнению с привычным моделированием в механике).

  Усилие автора было направлено также на то, чтобы дать предельно краткое изложение основ термодинамической теории с некоторыми примерами технически интересных приложений.

Для понимания излагаемого материала вполне достаточным является знакомство с физическими основами механики в объеме, читаемом в общем курсе физики в технических вузах, и соответствующими сведениями из математического анализа. Предполагается также знание элементарных опытных данных относительно тепловых явлений, почерпнутых как из повседневной практики, так и из школьного курса физики.

Барометрическая формула.

Атмосферное давление на высоте h обусловлено весом вышележащих слоёв газа. Давление на высоте h+dh будет P+dP (dh>0, dP<0, т.к. вес и давление с высотой убывают).

 Разность давлений P и P+dP обусловлена весом газа, заключённого в объёме цилиндра, с площадью основания, равной  и высотой dh (Рис. 8.8).

,

где  – плотность газа на высоте , отсюда

(*)

При нормальных условиях воздух можно считать идеальным газом. Тогда

  можно найти из уравнения состояния идеального газа , здесь

Рис. 8.8

М – средняя масса моля воздуха. Плотность , подставим в (*), получим

.  Поделим обе части на Р: . Возьмём интеграл от левой и правой частей:

.

Предел  давление на уровне h=0. Для случая, когда температура постоянная (изотермическая атмосфера), интегрируя, получим:

, отсюда получаем барометрическую формулу.

 

 

Графическая иллюстрация этой формулы на рис. 8.9 Давление убывает с высотой тем быстрее, чем тяжелее газ и чем ниже температура.

Рис. 8.9


Элементы специальной (частной) теории относительности