Применение первого начала термодинамики к изопроцессам
Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.
Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.
Как уже указывалось в § 53, из первого начала термодинамики (dQ=dU+dA) для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:
Согласно формуле (53.4),
Тогда для произвольной массы газа получим
(54.1)
Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа (см. (52.2)) при увеличения объема от V1 до V2 равна
(54.2)
и определяется площадью заштрихованного прямоугольника (рис. 82). Если использовать уравнение (42.5) Клапейрона — Менделеева для выбранных нами двух состояний, то
откуда
Тогда выражение (54.2) для работы изобарного расширения примет вид
(54.3)
Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2 —T1 =1 К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.
В изобарном процессе при сообщении газу массой т количества теплоты
его внутренняя энергия возрастает на величину (согласно формуле (53.4))
При этом газ совершит работу, определяемую выражением (54.3).
Изотермический процесс (T=const). Как уже указывалось § 41, изотермический процесс описывается законом Бойля—Мариотта:
Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис. 60), расположенную на диаграмме тем выше, чем выше температура, при которой происходит процесс.
Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа:
Так как при Т=const внутренняя энергия идеального газа не изменяется:
то из первого начала термодинамики (dQ=dU+dA) следует, что для изотермического процесса
т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:
(54.4)
Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.
Адиабатический процесс. Политропный процесс
Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.
Из первого начала термодинамики (dQ=dU+dA) для адиабатического процесса следует, что
(55.1)
т. е. внешняя работа совершается за счет изменения внутренней энергии системы.
Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде
(55.2)
Продифференцировав уравнение состояния для идеального газа
получим
(55.3)
Исключим из (55.2) и (55.3) температуру Т.
Разделив переменные и учитывая, что Сp/СV=g (см. (53.8)), найдем
Интегрируя это уравнение в пределах от p1 до p2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению
Так как состояния 1 и 2 выбраны произвольно, то можно записать
(55.4)
Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.
Для перехода к переменным Т, V или p, Т исключим из (55.4) с помощью уравнения Клапейрона — Менделеева
соответственно давление или объем:
(55.5)
(55.6)
Выражения (55.4) — (55.6) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина (см. (53.8) и (53.2))
(55.7)
называется показателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, g=1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, g=1,4. Значения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.
Диаграмма адиабатического процесса (адиабата) в координатах р, V изображается гиперболой (рис. 83). На рисунке видно, что адиабата (pVg = const) более крута, чем изотерма (pV = const). Это объясняется тем, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.
Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.1) в виде
Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расширения идеального газа
(55.8)
Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расширении можно преобразовать к виду
где
.
Работа, совершаемая газом при адиабатическом расширении 1—2 (определяется площадью, заштрихованной на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.
Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны СV и Сp, в изотермическом процессе (dT=0) теплоемкость равна ±¥, в адиабатическом (dQ=0) теплоемкость равна нулю. Процесс, в котором теплоемкость остается постоянной, называется политропным.
Исходя из первого начала термодинамики при условии постоянства теплоемкости (C=const) можно вывести уравнение политропы:
(55.9)
где п=(С—Сp)/(С—СV)—показатель политропы. Очевидно, что при С=0, n=g, из (55.9) получается уравнение адиабаты; при С = ¥, n = 1 — уравнение изотермы; при С=Сp, n=0 —уравнение изобары, при С=СV, n=±¥ — уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.
Работа идеального газа. Круговые циклы.
Пусть газ находится в сосуде, который закрыт поршнем.
S-площадь поршня. Переместим поршень на расстояние
l, под действием
силы F. При этом совершится работа:
А= F·
l (9)
Известно, что
(10)
Подставим правую часть уравнения (10) в (9), получим:
- изменение объёма.
а) A=
- работа при изобарном процессе.
б) при изохорном процессе А=0 , т.к. V=const
в) при изотермическом процессе Т= const
, (11)
обозначим
(12)
т.к.
(13)
г) dA=-dU, обозначим dU=CVdT
dA=- CVdT
A=Cv(T1-T2) (14)
Статистика Максвелла-Больцмана
Распределение Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от
до
![]()
, а координаты в пределах от x, y, z до x+dx, y+dy, z+dz, равно
где
,
плотность молекул в том месте пространства, где
;
;
;
полная механическая энергия частицы.
Распределение Максвелла-Больцмана устанавливает распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля.
Примечание: распределение Максвелла и Больцмана являются составными частями единого распределения, называемого распределением Гиббса (этот вопрос подробно рассматривается в спецкурсах по статической физике, и мы ограничимся только упоминанием этого факта).
Вопросы для самоконтроля.
Дайте определение вероятности.
Каков смысл функции распределения?
Каков смысл условия нормировки?
Запишите формулу для определения среднего значения результатов измерения величины x с помощью функции распределения.
Что представляет собой распределение Максвелла?
Что такое функция распределения Максвелла? Каков ее физический смысл?
Постройте график функции распределения Максвелла
и укажите характерные особенности этой функции.
Укажите на графике
наиболее вероятную скорость
. Получите выражение для
. Как изменяется график
при повышении температуры?
Получите барометрическую формулу. Что она определяет?
Получите зависимость концентрации молекул газа в поле силы тяжести от высоты.
Запишите закон распределения Больцмана а) для молекул идеального газа в поле силы тяжести; б) для частиц массой m, находящихся в роторе центрифуги, вращающейся с угловой скоростью
.
Объясните физический смысл распределения Максвелла-Больцмана.
Элементы специальной (частной) теории относительности |