Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис. 84). Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1—2) и сжатия (2—1) газа. Работа расширения (определяется площадью фигуры 1a2V2V11) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V1V22) отрицательна (dV<0). Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная работа A=>0 (цикл протекает по часовой стрелке), то он называется прямым (рис. 84, а), если за цикл совершается отрицательная работа A=<0 (цикл протекает против часовой стрелки), то он называется обратным (рис. 84, б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии газа равно нулю. Поэтому первое начало термодинамики (51.1) для кругового процесса

  (56.1)

т. е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Однако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

где Q1 — количество теплоты, полученное системой, Q2 — количество теплоты, отданное системой. Поэтому термический коэффициент полезного действия для кругового процесса

  (56.2)

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среда и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что се любое промежуточное состояние есть состояние термодинамического равновесия; для него «безразлично», идет процесс в прямом или обратном направлении. Реальные процессы сопровождаются диссипацией энергии (из-за трения, теплопроводности и т. д.), которая нами не обсуждается. Обратимые процессы — это идеализация реальных процессов. Их рассмотрение важно по двум причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.

Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно dQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

 (57.1)

Из равенства нулю интеграла (57.1), взятого по замкнутому контуру, следует, что подынтегральное выражение dQ/T есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

 (57.2)

Функция состояния, дифференциалом которой является dQ/T, называется энтропией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

  (57.3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

  (57.4)

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде неравенства Клаузиуса

 (57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (57.2), изменение энтропии

 (57.6)

где подынтегральное выражение и пределы интегрирования определяются через величины, характеризующие исследуемый процесс. Формула (57.6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий.

Исходя из выражения (57.6), найдем изменение энтропии в процессах идеального газа. Taк как  то

или

  (57.7)

т. е. изменение энтропии DS1®2 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода 1®2.

Так как для адиабатического процесса dQ = 0, то DS = 0 и, следовательно, S=const, т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называют изоэнтропийным процессом. Из формулы (57.7) следует, что при изотермическом процессе (T1= T2)

при изохорном процессе (V1 = V2)

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы — это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние (по определению, W³1, т. е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя £ 1!)).

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

  (57.8)

где k — постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана (57.8) позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия — наиболее вероятного состояния системы — число микросостояний максимально, при этом максимальна и энтропия.

Так как реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии — принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор пока вероятность состояния не станет максимальной.

Сопоставляя выражения (57.5) и (57.8), видим, что энтропия и термодинамическая вероятность состояний замкнутой системы могут либо возрастать (в случае необратимых процессов), либо оставаться постоянными (в случае обратимых процессов).

Отметим, однако, что эти утверждения имеют место для систем, состоящих из очень большого числа частиц, но могут нарушаться в системах с малым числом частиц. Для «малых» систем могут наблюдаться флуктуации, т. е. энтропия и термодинамическая вероятность состояний замкнутой системы на определенном отрезке времени могут убывать, а не возрастать, или оставаться постоянными.

Циклические (круговые) процессы. Работа цикла.

Круговым процессом или циклом называется процесс, при котором система, пройдя ряд состояний, возвращается в исходное состояние. На pV- диаграмме цикл изображается замкнутой кривой. Если цикл осуществляется по часовой стрелке (I), то он называется прямым, если в обратном направлении (II)- обратным.

Совершив цикл, система возвращается в исходное состояние. Поэтому изменение внутренней энергии за цикл равно нулю, т.е. dU=0. Следовательно, работа, совершенная системой, будет равна количеству теплоты полученному системой. Работа, совершенная системой равна площади цикла на pV- диаграмме. Однако нужно иметь в виду, что в процессе осуществления цикла, система не только получает , но и отдает некоторое количество теплоты и, следовательно Q=Q1– Q2 , где Q1– количество теплоты,

полученное системой, Q2 – отданное системой количество теплоты (Q2 <0).

Поэтому термический коэффициент полезного действия цикла можно найти по формуле:

 

 

Цикл называется обратным, если он может осуществляться как в прямом, так и в обратном направлении и при этом в окружающей среде и в самой системе не происходит никаких изменений. Всякий другой процесс, не удовлетворяющий этим условиям будет необратим.

Работа цикла определяется по формуле:

Ац=Арасшир.-Асжат.

Процесс будет обратимым, если он является равновесным. Обратимость равновесного процесса следует из того, что его любое промежуточное состояние также является состоянием термодинамического равновесия.

Реальные газы

План

Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

Метастабильные состояния. Критическое состояние.

Внутренняя энергия реального газа.

Эффект Джоуля – Томсона. Сжижение газов и получение низких температур.

1. Силы межмолекулярного взаимодействия в газах

 Многие реальные газы подчиняются законам идеальных газов при нормальных условиях. Воздух можно считать идеальным до давлений ~ 10 атм. При повышении давления отклонения от идеальности (отклонение от состояния, описываемого уравнением Менделеева - Клайперона) возрастают и при p=1000 атм достигают более 100%.

 Дело в том, что между молекулами действуют значительные по величине силы, называемые молекулярными силами. При удалении молекул друг от друга молекулярное взаимодействие проявляется в виде сил притяжения, при сближении – в виде сил отталкивания. Молекулярные силы имеют электромагнитное и квантовое происхождение. На рис. 9.1 а) представлена качественная зависимость сил межмолекулярного взаимодействия от расстояния r между молекулами, где Fотт и Fпр – соответственно силы отталкивания

Рис. 9.1

и притяжения, а F – их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения – отрицательными. Соответствующая качественная кривая зависимости энергии взаимодействия молекул от расстояния r между центрами молекул приведена на

рис. 9.1б). На малых расстояниях  молекулы отталкиваются, на больших  притягиваются. Быстро возрастающие на малых расстояниях силы отталкивания означают грубо говоря, что молекулы как бы занимают некоторый определённый объём, дальше которого газ не может быть сжат.


Элементы специальной (частной) теории относительности