Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лекции и задачи по физике Примеры решений контрольной работы

Теорема Гаусса для электростатического поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777—1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен

Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e0, т. е.

  (81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Ei полей, создаваемых каждым зарядом в отдельности:  Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi /e0. Следовательно,

  (81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью r=dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

  (81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотностью +s (s=dQ/dS — заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (соsa=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен sS. Согласно теореме Гаусса (81.2), 2ES=sS/e0, откуда

  (82.1)

Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями + s и –s. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E = E+ + E– (E+ и E– определяются по формуле (82.1)), поэтому результирующая напряженность

  (82.2)

Таким образом, результирующая напряженность поля в области между плоскостями описывается формулой (82.2), а вне объема, ограниченного плоскостями, равна нулю.

3. Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +s. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому линии напряженности направлены радиально (рис. 128). Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), , откуда

  (82.3)

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).

4. Поле объемно заряженного шара. Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью r (r =  – заряд, приходящийся на единицу объема). Учитывая соображения

симметрии (см. п. 3), можно показать, что для напряженности поля вне шара получится тот же результат, что и в предыдущем случае (см. (82.3)). Внутри же шара напряженность поля будет другая. Сфера радиуса r'<R охватывает заряд Q'=4/3. Поэтому, согласно теореме Гаусса (81.2), . Учитывая, что , получаем

  (82.4)

Таким образом, напряженность поля вне равномерно заряженного шара описывается формулой (82.3), а внутри его изменяется линейно с расстоянием r' согласно выражению (82.4). График зависимости Е от r для рассмотренного случая приведен на рис. 130.

5. Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 131) заряжен равномерно с линейной плотностью t (t =  – заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность равен 2prlЕ. По теореме Гаусса (81.2), при r>R 2prlЕ = tl/e0, откуда

  (82.5)

Если r<R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E=0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определяется выражением (82.5), внутри же его поле отсутствует.

  Принцип термодинамического равновесия.

 Уравнение состояния 

Повседневный опыт показывает, что в любой предоставленной себе самой, то есть полностью изолированной от внешних воздействий, термодинамической системе со временем происходит выравнивание по всему объему всех термодинамических параметров. Это – принцип полного термодинамического равновесия (его иногда называют нулевым началом термодинамики). То состояние, к которому самопроизвольно и необратимо (то есть так, что, придя в это состояние, система сама собой не может из него выйти) стремится любая изолированная система, получило название состояния теплового или термодинамического равновесия. Состояние теплового равновесия возможно и в открытых системах при неизменности внешнего воздействия на систему, но об этом подробнее сказано в разделе 9.

В состоянии теплового равновесия прекращаются все макроскопические изменения в термодинамической системе, и в таком состоянии система способна оставаться сколь угодно долгое время. Для нарушения теплового равновесия необходимо изменение внешнего воздействия на систему. Самопроизвольные, чаще всего небольшие, отклонения от равновесного состояния термодинамической системы, конечно, случаются (в силу хаотического, взаимно несогласованного характера протекания микропроцессов). Они носят название флуктуаций. Это особый вопрос, рассматриваемый в статистической механике, а в рамках феноменологической равновесной термодинамики флуктуациями просто пренебрегают.

Процесс самопроизвольного перехода системы из неравновесного состояния в состояние равновесное называется процессом релаксации. У разных термодинамических параметров характерное время выравнивания разное. Промежуток времени, характеризующий процесс выравнивания по объему какого-либо из макроскопических параметров, носит название времени релаксации для данного параметра. Время релаксации зависит от микромеханизма процесса релаксации. Для установления состояния полного термодинамического равновесия требуется время, определяемое наибольшим из времен релаксации. За это время устанавливается равновесие по всем параметрам. Следует подчеркнуть, что тепловое равновесие носит динамический характер, то есть сохраняется присутствие микропроцессов, не нарушающих однако состояния теплового равновесия..

В классической термодинамике механизм установления теплового равновесия не играет абсолютно никакой роли, поскольку эта термодинамика имеет дело только с такими термодинамическими системами, где уже установилось тепловое равновесие (или почти установилось, то есть система пренебрежимо мало отклонилась от равновесного состояния). После установления равновесия, на термодинамических параметрах уже никак не отражается наличие или отсутствие между элементами термодинамического коллектива микровзаимодействий, ответственных за установление в системе теплового равновесия. Именно поэтому можно рассматривать самые простые модели поведения частиц (элементов) системы, где никакой роли не будут играть, например, размеры частиц или законы их взаимодействия, а результаты все равно получаются правильно отражающими наблюдаемые явления (разумеется, в границах применимости используемых моделей). Это замечательное свойство – независимость выводов термодинамики от законов микровзаимодействий, их всеобщность – есть следствие равновесного состояния рассматриваемых термодинамических систем. За это термодинамику иногда называют термостатикой.

 Все явления, сопровождающиеся процессами приближения к тепловому равновесию, необратимы. Необратимость процесса в строгом смысле этого слова означает, что процесс нельзя пройти в обратном направлении. Так, например, при достаточно быстром сжатии газа в колбе под поршнем концентрация молекул газа вблизи поршня больше, чем во всем остальном объеме, а при обратном движении поршня – наоборот, концентрация молекул вблизи поршня меньше. Это означает, что промежуточные состояния термодинамической системы в процессе сжатия и в процессе разрежения газа не идентичны друг другу, и, следовательно, процесс нельзя пройти в обратном направлении в точности через те же самые промежуточные состояния. О термодинамическом понимании необратимости и обратимости мы еще будем говорить в третьем разделе.

В механике мы привыкли к тому, что задание начальных значений координат и импульсов частиц однозначно определяет (через решение уравнений движения) их координаты и импульсы (то есть состояние механической системы) в любые другие моменты времени. Это означает, что разные начальные условия ведут к разным конечным состояниям, и, зная уравнение движения, в принципе всегда можно восстановить историю состояний механической системы.

Иное дело термодинамические системы. Каковы бы ни были первоначальные распределения частиц системы по координатам и импульсам, после установления теплового равновесия ничего нельзя сказать об этих начальных условиях. Термодинамическая система «не помнит» историю своих состояний, предшествовавших равновесному состоянию. Ничего нельзя сказать о том, каким путем, через какие промежуточные состояния система шла к равновесию. В равновесной термодинамической системе не сохраняется информация о ее прошлых состояниях. Динамическое описание состояния, используемое в механике, предполагает возможность в любой момент точно указать координаты и импульсы всех частиц системы. В термодинамических системах, состоящих из колоссального числа частиц, движущихся почти независимо друг от друга, возможность такого динамического описания оказывается утраченной. Однако в условиях термодинамического равновесия имеется возможность указать усредненные по времени (или, что то же самое, по коллективу частиц) координаты и импульсы частицы. По сравнению с механикой оказалась утраченной возможность точного знания фазовой траектории отдельной частицы в координатно-импульсном пространстве. Произошла некоторая утрата определенности описания состояния частицы. Мерой утраты этой определенности должна служить новая функция состояния системы, связанная с усредненной величиной разброса («размытостью») значений координат и импульсов частиц около их средних значений. Эта функция должна отражать новую (по сравнению с механикой) характеристику системы частиц, которую можно назвать хаотичностью состояния системы.  Изменение этой функции при переходе системы из одного состояния в другое будет означать изменение степени хаотичности состояния системы. Несколько забегая вперед, укажем, что такой функцией является энтропия.

Разность потенциалов между двумя точками стационарного электрического поля:

а) векторная физическая величина, численно равная работе сил электрического поля по перемещению положительного единичного заряда из одной точки поля в другую: ;

б) скалярная физическая величина, численно равная работе сил электрического поля по перемещению заряда из одной точки поля в другую: ;

в) скалярная физическая величина, численно равная работе сил электрического поля по перемещению положительного единичного заряда из одной точки поля в другую: .

25. Поле создано бесконечной равномерно заряженной поверхностью с поверхностной плотностью заряда +s. Укажите направление вектора градиента потенциала в точке А.

а) А – 4; б) А – 1; в) А – 2; г) А – 3.

26. На рисунке показаны следы эквипотенциальных поверхностей системы зарядов и значения потенциала на них. Вектор напряженности электрического поля в точке А ориентирован в направлении:

а) 3; б) 1; в) 2; г) 4.

27. Условие перераспределения (движения) электрических зарядов в объеме проводника:

а) E=E0+E'¹0; б) E=E0+E'=0; в) E=E0+E'=const, где E – напряженность результирующего поля в объеме проводника; E0 – напряженность внешнего электрического поля; E' – напряженность "собственного" электрического поля.

28. Условие равновесия зарядов в проводнике:

а) E=E0+E'¹0; б) E=E0+E'=0; в) E=E0+E'=const, где E – напряженность результирующего поля в объеме проводника; E0 – напряженность внешнего электрического поля; E' – напряженность "собственного" электрического поля.

29. Электрическая емкость (электроемкость) проводника:

а) характеристика проводника, количественная мера его способности удерживать электрический заряд;

б) характеристика электрического поля проводника;

в) физическая величина, численно равная количеству электричества, на которое необходимо изменить заряд проводника, чтобы его потенциал изменился на единицу.

30. Электрическая емкость (электроемкость) проводника зависит от:

а) формы поверхности, линейных размеров, расположения относительно других проводников, среды, окружающей проводник, от его заряда и потенциала;

б) формы поверхности, линейных размеров, расположения относительно других проводников, среды, окружающей проводник, и не зависит от его заряда и потенциала;

в) формы поверхности, линейных размеров, среды, окружающей проводник, и не зависит от его заряда и потенциала, расположения относительно других проводников.

31. Электрическая емкость (электроемкость) проводника:

а) прямо пропорциональна заряду проводника C~q;

б) обратно пропорциональна потенциалу проводника С~1/j;

в) не зависит от заряда проводника и его потенциала.

32. Емкость плоского конденсатора в системе СИ определяется соотношением:

а) ; б) ; в) .

33. Емкость цилиндрического конденсатора в системе СИ определяется соотношением:

а) ; б) ; в) .

34. Емкость сферического конденсатора в системе СИ определяется соотношением:

а) ; б) ; в) .


Элементы специальной (частной) теории относительности