Электрический ток Закон Ома Мощность, выделяемая в цепи переменного тока Электромагнетизм Закон Ампера Колебания и волны Электромагнитные волны Основные законы оптики Интерференция света

Лекции и задачи по физике Примеры решений контрольной работы

Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды, по определению, равен

  (89.1)

Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как

 (89.2)

Единица электрического смещения — кулон на метр в квадрате (Кл/м2).

Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. §79).

Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность

где Dn — проекция вектора D на нормаль n к площадке dS.

Теорема Гаусса для электростатического поля в диэлектрике:

  (89.3)

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума Dn = e0En (e =1), тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где  — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

Условия на границе раздела двух диэлектрических сред

Рассмотрим связь между векторами Е и D на границе раздела двух однородных изотропных диэлектриков (диэлектрические проницаемости которых e1 и e2) при отсутствии на границе свободных зарядов. Построим вблизи границы раздела диэлектриков 1 и 2 небольшой замкнутый прямоугольный контур ABCDA длины l, ориентировав его так, как показано на рис. 136. Согласно теореме (83.3) о циркуляции вектора Е,

откуда

(знаки интегралов по АВ и CD разные, так как пути интегрирования противоположны, а интегралы по участкам ВС и DA ничтожно малы). Поэтому

  (90.1)

Заменив, согласно (89.1), проекции вектора Е проекциями вектора D, деленными на e0e, получим

  (90.2)

На границе раздела двух диэлектриков (рис. 137) построим прямой цилиндр ничтожно малой высоты, одно основание которого находится в первом диэлектрике, другое — во втором. Основания DS настолько малы, что в пределах каждого из них вектор D одинаков. Согласно теореме Гаусса (89.3),

(нормали n и n' к основаниям цилиндра направлены противоположно). Поэтому

  (90.3)

Заменив, согласно (89.1), проекции вектора D проекциями вектора Е, умноженными на e0e, получим

  (90.4)

Таким образом, при переходе через границу раздела двух диэлектрических сред тангенциальная составляющая вектора Е (Еt) и нормальная составляющая вектора D (Dn) изменяются непрерывно (не претерпевают скачка), а нормальная составляющая вектора Е (En) и тангенциальная составляющая вектора D (Dt) претерпевают скачок.

Из условий (90.1) — (90.4) для составляющих векторов Е и D следует, что линии этих векторов испытывают излом (преломляются). Найдем связь между углами a1 и a2 (на рис. 138 e1>e2). Согласно (90.1) и (90.4), Еt2 = Еt1 и e2En2 = e1En1. Разложим векторы E1 и E2 у границы раздела на тангенциальные и нормальные составляющие. Из рис. 138 следует, что

Учитывая записанные выше условия, получим закон преломления линий напряженности Е (а значит, и линий смещения D)

Эта формула показывает, что, входя в диэлектрик с большей диэлектрической проницаемостью, линии Е и D удаляются от нормали.

Максимальная работа в термодинамических процессах

Поскольку энергетические соотношения играют в термодинамике очень важную роль (вся термодинамика развивалась под влиянием практических потребностей преобразования теплоты в работу), то при расчетах особый интерес представляет аналог механической потенциальной энергии. Напомним, что в механике потенциальная энергия вводится как скалярная функция, позволяющая вычислить работу консервативной силы не через вычисление интеграла от элементарной работы вдоль всего пройденного пути, а просто как разность значений этой функции в начале и конце пути (что существенно упрощает вычисления). Нахождение работы силы является одной из важнейших задач механики. Однако в термодинамике, в отличие от привычной механики консервативных систем (где отсутствуют силы, зависящие от скоростей), система может переходить из одного состояния в другое, совершая разную работу, в зависимости от способа (пути) перехода, поскольку разное количество энергии передается частично силовым (работа), а частично тепловым (теплота) путем (хотя полное изменение внутренней энергии системы будет при этом тем же самым). Поэтому в термодинамике рассматривают четыре наиболее важных для практики процесса изменения состояния термодинамических систем. Так, например, изменение состояния системы без теплообмена с окружающей средой может происходить при неизменном объеме, а может - при постоянном давлении (с изменением объема). Роль потенциальной энергии в этих процессах будут играть разные функции, в первом случае – внутренняя энергия U, а во втором – так называемая энтальпия H (теплосодержание). Если процесс происходит при хорошем тепловом контакте, обеспечивающем постоянство и равенство температуры термодинамической системы с температурой внешней среды, то изменение состояния системы может опять происходить как при постоянном объеме, так и при постоянном давлении. Здесь в первом случае роль потенциальной энергии будет играть функция, называемая свободной энергией и обозначаемая обычно F, а во втором – термодинамическим потенциалом Гиббса (свободной энтальпией), который мы будем обозначать буквой G.

 Таким образом, в термодинамике оказалось несколько аналогов потенциальной энергии в зависимости от вида процесса. Эти функции состояния термодинамической системы получили название термодинамических потенциалов. Изменения этих функций при переходе системы из одного состояния в другое позволяют вычислить максимальную работу, которую при этом система может совершить в самом благоприятном случае, когда нет потерь энергии. Еще раз напомним, что основной технической задачей термодинамики является создание максимально эффективных тепловых машин как источников механической энергии, то есть машин, преобразующих теплоту в работу.

6.2. Термодинамические потенциалы в адиабатных процессах

Термин адиабатный означает полную тепловую изоляцию системы. Самый простой случай при этом – обратимые процессы в полностью изолированных системах, то есть в системах, не имеющих никаких связей с внешним миром - ни тепловых, ни силовых, ни материальных (обмен веществом). В этом случае термодинамическое тождество (5.3) в силу равенства нулю левой части сразу показывает, что совершаемая системой работа против внешних сил может выполняться только за счет уменьшения ее внутренней энергии, то есть

  dAmax = - (dU)S,V (6.1)

Индекс max означает, что равенство выполняется только в идеальном процессе, происходящем без потерь энергии. Равенство (6.1) означает, что в полностью изолированных системах при сохранении энтропии и объема роль потенциальной энергии будет играть внутренняя энергия.

 Если работа выполняется термодинамической системой в условиях теплоизоляции, но при наличии механических связей с окружающими телами, то такая работа выполняется не только за счет убыли внутренней энергии, но и за счет изменения потенциальной энергии системы как целого в поле внешних сил dEпот. Основной случай механической связи – это связь, осуществляемая посредством внешнего давления (практически наиболее интересный случай), и тогда dEпот = PвнешdV. Для элементарной работы газообразной термодинамической системы при условии постоянного давления это дает

 dAmax = - dU - dEпот = - dU - PdV = - d(U + PV) = - (dH)S,Р (6.2)

Уравнение (6.2) показывает, что роль потенциальной энергии для внешних сил (при постоянном давлении) у газа играет произведение давления на объем PV. Сумма внутренней энергии и этого произведения, играющая роль полной потенциальной энергии в изобарных процессах без теплообмена, получившая название энтальпия (или теплосодержание) и обозначаемая обычно символом H,

 H = U + PV, (6.3)

является термодинамическим потенциалом для адиабатных процессов при наличии силовой связи с внешним миром. Максимальная работа, которую может совершить термодинамическая система в таких условиях, равна убыли энтальпии. В присутствии электромагнитных влияний выражение для энтальпии принимает вид

 H = U + PV - (D*E)/2 – (H*B)/2. (6.3’)

Стоящие в скобках скалярные произведения учитывают потенциальную энергию поляризованности и намагниченности молекул (в расчете на один моль) во внешних электрических (напряженность E) и магнитных (магнитная индукция B) полях. Здесь D и H – векторы электрического смещения и напряженности магнитного поля.

 

 6.3. Термодинамические потенциалы в изотермических процессах

Очень важным для практических приложений является рассмотрение процессов, при осуществлении которых температура в системе успевает по всему объему выравниваться с температурой окружающей среды. Это означает, что теплота быстро поступает в систему из окружающей среды (или отводится). При постоянстве температуры термодинамическое тождество (5.3) можно переписать в виде

  dAmax = - dU + TdS = - d(U – TS) = - (dF)Т,V, (6.4)

где через F обозначена свободная энергия, играющая роль потенциальной энергии для изотермических процессов в условиях постоянства объема термодинамической системы

 F = U – TS. (6.5)

  Совершенно аналогичным образом вводится термодинамический потенциал Гиббса (именуемый также свободной энтальпией). Он играет роль потенциальной энергии для изотермических процессов, идущих в системах, которые имеют хороший тепловой контакт с внешним миром и силовую связь с ним (постоянство температуры и внешних сил).

Для газообразных систем при постоянном давлении

dAmax= - d(F + PV) = - dU +TdS – PdV = - d(U – ТS+ PV) = - (d G) Т,Р, (6.6)

то есть потенциал Гиббса для газа 

G = U – TS+ PV. (6.7)

В присутствии электромагнитных влияний этот потенциал записывается так

 G = U – TS + PV - (D*E)/2 - (H*B)/2. (6.7’)

Электростатика,

постоянный электрический ток,

электромагнитные явления

1. Электростатика

1. Электризация это:

а) процесс перераспределения положительных зарядов между незаряженными телами, или среди отдельных частей одного и того же тела, под влиянием различных факторов;

б) процесс перераспределения отрицательных зарядов между незаряженными телами, или среди отдельных частей одного и того же тела, под влиянием различных факторов;

в) процесс помещения положительных зарядов на незаряженные тела, или отдельные части одного и того же тела;

г) процесс помещения отрицательных зарядов на незаряженные тела, или отдельные части одного и того же тела;

д) процесс перераспределения положительных и отрицательных зарядов незаряженных тел, или среди отдельных частей одного и того же тела, под влиянием различных факторов.


Явление электромагнитной индукции (опыты Фарадея)