Электрический ток Закон Ома Мощность, выделяемая в цепи переменного тока Электромагнетизм Закон Ампера Колебания и волны Электромагнитные волны Основные законы оптики Интерференция света

Лекции и задачи по физике Примеры решений контрольной работы

Электрическая емкость уединенного проводника

Рассмотрим уединенный проводник, т. е. проводник, который удален от других проводников, тел и зарядов. Его потенциал, согласно (84.5), прямо пропорционален заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют различные потенциалы. Поэтому для уединенного проводника можно записать

Величину

  (93.1)

называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника определяется зарядом, сообщение которого проводнику изменяет его потенциал на единицу.

Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала.

Единица электроемкости — фарад (Ф): 1 Ф — емкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл.

Согласно (84.5), потенциал уединенного шара радиуса R, находящегося в однородной среде с диэлектрической проницаемостью e, равен

Используя формулу (93.1), получим, что емкость шара

  (93.2)

Отсюда следует, что емкостью 1 Ф обладал бы уединенный шар, находящийся в вакууме и имеющий радиус R=C/(4pe0)»9×106 км, что примерно в 1400 раз больше радиуса Земли (электроемкость Земли С»0,7 мФ). Следовательно, фарад — очень большая величина, поэтому на практике используются дольные единицы - миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ). Из формулы (93.2) вытекает также, что единица электрической постоянной e0 — фарад на метр (Ф/м) (см. (78.3)).

Конденсаторы

Как видно из § 93, для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, иными словами, обладать большой емкостью. Эти устройства получили название конденсаторов.

Если к заряженному проводнику приближать другие тела, то на них возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q будут заряды противоположного знака. Эти заряды, естественно, ослабляют поле, создаваемое зарядом Q, т. е. понижают потенциал проводника, что приводит (см. (93.1)) к повышению его электроемкости.

Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют (см. § 82): 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, возникающие на разных обкладках, являются равными по модулю разноименными зарядами. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (j1 —j2) между его обкладками:

  (94.1)

Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. Его можно рассчитать используя формулы (86.1) и (94.1). При наличии диэлектрика между обкладками разность потенциалов между ними, согласно (86.1),

 (94.2)

где e — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q=sS, с учетом (94.2) получим выражение для емкости плоского конденсатора:

  (94.3)

Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиальных цилиндров с радиусами r1 и r2 (r2 > r1), вставленных один в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и сосредоточенным между цилиндрическими обкладками. Разность потенциалов между обкладками вычислим по формуле (86.3) для поля равномерно заряженного бесконечного цилиндра с линейной плотностью t =Q/l (l—длина обкладок). При наличии диэлектрика между обкладками разность потенциалов

  (94.4)

Подставив (94.4) в (94.1), получим выражение для емкости цилиндрического конденсатора:

 (94.5)

Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу (86.2) для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов

  (94.6)

Подставив (94.6) в (94.1), получим

Если d=r2—r1<<r1, то r2 » r1 » r и C=4pe0er2/d. Так как 4pr2 —площадь сферической обкладки, то получаем формулу (94.3). Таким образом, при малой величине зазора по сравнению с радиусом сферы выражения для емкости сферического а плоского конденсаторов совпадают. Этот вывод справедлив и для цилиндрического конденсатора: при малом зазоре между цилиндрами по сравнению с их радиусами в формуле (94.5) ln (r2/r1) можно разложить в ряд, ограничиваясь только членом первого порядка. В результате опять приходим к формуле (94.3).

Из формул (94.3), (94.5) и (94.7) вытекает, что емкость конденсаторов любой формы прямо пропорциональна диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками. Поэтому применение в качестве прослойки сегнетоэлектриков значительно увеличивает емкость конденсаторов.

Конденсаторы характеризуются пробивным напряжением — разностью потенциалов между обкладками конденсатора, при которой происходит пробой — электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

Для увеличения емкости и варьирования ее возможных значений конденсаторы соединяют в батареи, при этом используется их параллельное и последовательное соединения.

1. Параллельное соединение конденсаторов (рис. 144). У параллельно соединенных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна jA – jB. Если емкости отдельных конденсаторов С1, С2, ..., Сn, то, согласно (94.1), их заряды равны

а заряд батареи конденсаторов

Полная емкость батареи

т. е. при параллельном соединении конденсаторов она равна сумме емкостей отдельных конденсаторов.

2. Последовательное соединение конденсаторов (рис. 145). У последовательно соединенных конденсаторов заряды всех обкладок равны по модулю, а разность потенциалов на зажимах батареи

где для любого из рассматриваемых конденсаторов Dji = Q/Сi. С другой стороны,

откуда

т. е. при последовательном соединении конденсаторов суммируются величины, обратные емкостям. Таким образом, при .последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемой в батарее.

 Модель идеального газа. Уравнение состояния идеального газа. Идеальный газ в силовом поле. Барометрическая формула

Итак, термодинамика и статистическая механика с разных позиций изучают одно и то же, а именно – влияние на поведение макроскопических объектов (при передаче энергии несиловым способом) закономерностей, порожденных неупорядоченностью расположения и несогласованностью движения микрочастиц, образующих термодинамическую систему. Определенные предположения или гипотезы, положенные в основу этих дисциплин, отличаются друг от друга, хотя они и являются обобщением одних и тех же наблюдаемых макроскопических явлений. Так, статистическая механика базируется на положениях, относящихся к гипотезам о строении и взаимодействии на микроуровне вещества конкретных природных тел. Благодаря более глубокому проникновению в микроструктуру изучаемых конкретных макрообъектов статистическая механика позволяет более детально предсказывать их поведение в термодинамических процессах, но не обладает всеобщностью выводов феноменологической термодинамики. В свою очередь термодинамика позволяет получить более глубокое, чем просто макроскопически-описательное обоснование и истолкование наблюдаемых закономерностей, опираясь, именно в силу всеобщности изучаемых ею закономерностей, на рассмотрение микроструктуры не реальных (что в принципе возможно, но связано с резким усложнением математических выкладок), а идеализированных макроскопических объектов, расчет поведения которых не требуют сложной математики. Полученные на основе изучения поведения таких идеализированных объектов (моделей) общие закономерности (общие для всех объектов как идеальных, так и неидеальных, как простых, так и сложных) оказываются не только легко постигаемыми в своих принципиальных моментах, но и весьма полезными в технических приложениях.

Сначала рассмотрим самую простую модель термодинамической системы – идеальный газ. В модель идеального газа заложено два основных предположения, первое – о невзаимодействии молекул газа на расстоянии (взаимодействие осуществляется только в пренебрежимо краткий по длительности момент соударения), и второе – о возможности пренебрежения собственным объемом молекул по сравнению с полным объемом, занимаемым газом. Эта модель хорошо себя оправдывает в случае достаточно разреженных газов, когда диаметр молекул много меньше среднего расстояния между ними. Разумеется, применимость модели идеального газа не безгранична, и имеется достаточно много явлений (например, фазовые превращения – переход из одного агрегатного состояния в другое), для анализа которых даже на качественном уровне модель идеального газа непригодна и, значит, в этих случаях следует обращаться к более сложным моделям. Однако для решения поставленной задачи – обнаружения фундаментальных термодинамических соотношений (термодинамических уравнений состояния) – модель идеального газа оказалась вполне пригодной.

Уравнение состояния идеального газа нам дает объединенный газовый закон (1.2), который в расчете на один моль принимает вид

 РV = RT (3.1)

В термодинамике принято все вычисления проводить в расчете на один моль вещества, что и будет подразумеваться, если специально не оговаривается другое количество вещества, поэтому в уравнении (1.2) число молей m/M  нами всегда будет считаться равным единице.

Уравнение (1.2) для произвольного числа молекул N иногда записывают в виде 

 PV = NkT, (3.2)

где k – постоянная Больцмана (R =NA*k).

Это уравнение может быть получено из рассмотрения упругих ударов молекул идеального газа о стенки сосуда (газ в «ящике»). Такой способ получения уравнения является задачей статистической механики (см. ПРИЛОЖЕНИЕ 1). Уравнение (3.2) можно также переписать в виде

 Р = nkT ,  (3.3) где n – концентрация молекул (N/V).

Уравнение состояния идеального газа хорошо иллюстрируется геометрически. Так как в уравнение входят только три переменные, то любые две из них можно выбрать в качестве переменных, откладываемых по осям прямоугольной системы координат на плоскости, и при любом фиксированном значении третьей переменной уравнение состояния даст некоторую кривую (в частности, прямую) на плоскости. Так, задаваясь различными значениями температуры Т1,Т2,.., получаем для идеального газа семейство кривых, различающихся значениями параметра Т и называемых изотермами. В случае идеального газа кривая, получающаяся при постоянной температуре Т = Const, представляет собой равнобочную гиперболу на плоскости (Р,V). Изменяя значение параметра Т, мы получаем семейство гипербол, называемых изотермами идеального газа.

4. На рисунке представлена система равных по величине точечных электрических зарядов. Укажите направление результирующей силы, действующей на заряд q5 со стороны других зарядов:

а) 1; б) 2; в) 3; г) 4;

д) среди приведенных ответов правильного ответа нет.

5. На рисунке представлена система точечных электрических зарядов. Причем заряды q1=q3=q; q2=q4=2q Укажите направление результирующей силы, действующей на заряд q5=q со стороны других зарядов:

а) 1; б) 2; в) 3; г) 4;

д) среди приведенных ответов правильного ответа нет.

6. На рисунке представлена система точечных электрических зарядов. Причем заряды q1=q2=q; q3=q4=2q. Укажите направление результирующей силы, действующей на заряд q5=q со стороны других зарядов:

а) 3; б) 4; в) 5; г) 6.

7. Напряженность электрического поля:

а) векторная физическая величина, численно равная силе, действующей на положительный единичный заряд, помещенный в данную точку поля, не зависящая от среды, в которой находится заряд. Для точечного заряда: ;

б) векторная физическая величина, численно равная силе, действующей на положительный единичный заряд, помещенный в данную точку поля, зависящая от среды, в которой находится заряд. Для точечного заряда: ;

в) скалярная физическая величина, численно равная силе, действующей на положительный единичный заряд, помещенный в данную точку поля, зависящая от среды, в которой находится заряд. Для точечного заряда: ;

г) скалярная физическая величина, численно равная силе, действующей на положительный единичный заряд, помещенный в данную точку поля, не зависящая от среды, в которой находится заряд. Для точечного заряда: .


Явление электромагнитной индукции (опыты Фарадея)