Электрический ток Закон Ома Мощность, выделяемая в цепи переменного тока Электромагнетизм Закон Ампера Колебания и волны Электромагнитные волны Основные законы оптики Интерференция света

Лекции и задачи по физике Примеры решений контрольной работы

Магнитные поля соленоида и тороида

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l, имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида — неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее, тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный контур ABCDA, как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA, охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA. На участках АВ и CD контур перпендикулярен линиям магнитной индукции и Bl=0. На участке вне соленоида B=0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

  (119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

  (119.2)

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био — Савара — Лапласа; в результате получается та же формула (119.2).

Важное значение для практики имеет также магнитное поле тороида — кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симметрии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r. Тогда, по теореме о циркуляции (118.1), B×2pr=m0NI, откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N — число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B×2pr=0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Поток вектора магнитной индукции. Теорема Гаусса для поля В

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

  (120.1)

где Bn=В cos a —проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), dS=dSn — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos a (определяется выбором положительного направления нормали n). Поток вектора В связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено (см. § 109): оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен.

Поток вектора магнитной индукции ФB через произвольную поверхность S равен

  (120.2)

Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const и

Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл×м2).

Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:

 (120.3)

Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения (см. (120.3), (81.2)).

В качестве примера рассчитаем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью m, согласно (119.2), равна

Магнитный поток сквозь один виток соленоида площадью S равен

а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

  (120.4)

Закон Джоуля – Ленца.

К концу свободного пробега электрон приобретает дополнительную кинетическую энергию, среднее значение которой равно:

(Напомним: ).

Столкнувшись с атомом, электрон, по предположению, полностью передает приобретенную им энергию кристаллической решетке. Сообщенная решетке энергия идет на увеличение внутренней энергии металла, проявляясь в его нагревании.

Каждый электрон претерпевает за секунду в среднем  соударений. Обозначим число электронов проводимости в единице объема , тогда полная энергия, переданная электронами за единицу времени в единице объема будет равняться:

.

Зная, что  в результате получим закон Джоуля – Ленца в локальной форме:

Тепловая мощность, выделяющаяся в единице объема при протекании электрического тока пропорциональна квадрату напряженности поля.

Переходя от  и  к  и : (, ), получим , или

Получили другую форму закона Джоуля – Ленца. (Объемная плотность тепловой мощности равна произведению удельного сопротивления на квадрат плотности тока).

Примеры решения задач

Пример 1. Два параллельных бесконечно длинных провода, по которым текут в одном направлении токи I=60 А, расположены на расстоянии d=10 см друг от друга. Определить магнитную индукцию В в точке, отстоящей от одного про­водника на расстоянии r1=5 см и от другого — на расстоянии r2=12 см.

Решение. Для нахождения магнитной индукции в указанной точ­ке А (рис. 2) определим

  Рис. 2 направле­ния векторов индукций В1 и В2 по лей, создаваемых каждым проводни­ком в отдельности, и сложим их геометрически, т. е. B=B1+B2. Модуль индукции найдем по теоре­ме косинусов:

Значения индукций Bi и В2 выражаются соответственно через силу тока I и расстояния r1 и r2 от провода до точки, индукцию в которой мы вычисляем:

,

Подставляя B1 и В2 в формулу (1) и вынося  за знак корня, получим

 .  (2)

Убедимся в том, что правая часть этого равенства дает единицу магнитной индукции (Тл):

Здесь мы воспользовались определяющей формулой для маг­нитной индукции (В=Мmак /рп). Откуда следует, что

.

Вычисляем cosa. Заметим, что a=/_DAC. Поэтому по теореме косинусов запишем

,

 где d — расстояние между проводами. Отсюда

.

Подставив данные, вычислим значение косинуса: cos a = 0,576.

Подставив в формулу (2) значения m0, I, r1, r2 и cos b, найдем В=286 мкТл.


Явление электромагнитной индукции (опыты Фарадея)