Электрический ток Закон Ома Мощность, выделяемая в цепи переменного тока Электромагнетизм Закон Ампера Колебания и волны Электромагнитные волны Основные законы оптики Интерференция света

Лекции и задачи по физике Примеры решений контрольной работы

Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара — Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:

  (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

Основные понятия и определения электрических фильтров Электрическим фильтром называется четырехполюсник, предназначенный для выделения (пропускания) сигналов определенной полосы частот. В зависимости от пропускаемого спектра частот фильтры подразделяют на 4 основных вида

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток сквозь соленоид (потокосцепление) равен   Подставив это выражение в формулу (126.1), получим

  (126.2)

т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости m вещества, из которого изготовлен сердечник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. § 93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э. д. с. самоиндукции

Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и

  (126.3)

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то  т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то  т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции   препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=s/R, или

  (127.1)

Разделив в выражении (127.1) переменные, получим  Интегрируя это уравнение по I (от I0 до I) и t (от 0 до t), находим ln (I /I0) = –Rt/L, или

  (127.2)

где t=L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с.  возникает э. д. с. самоиндукции  препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома,  или

Введя новую переменную  преобразуем это уравнение к виду

где t — время релаксации.

В момент замыкания (t=0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от – до IR–) и t (от 0 до t), находим ln[(IR–)]/– = —t/t, или

  (127.3)

где  — установившийся ток (при t®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R/R0>>1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

Взаимная индукция

Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 184). Если в контуре 1 течет ток I1, то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален I1. Обозначим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда

  (128.1)

где L12 — коэффициент пропорциональности.

Если ток I1 изменяется, то в контуре 2 индуцируется э.д.с. , которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости изменения магнитного потока Ф21, созданного током в первом контуре и пронизывающего второй:

Аналогично, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 184 штриховыми линиями) пронизывает первый контур. Если Ф12 — часть этого потока, пронизывающего контур 1, то

Если ток I2 изменяется, то в контуре 1 индуцируется э.д.с. , которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре и пронизывающего первый:

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L21 и L12 равны друг другу, т. е.

  (128.2)

Коэффициенты L12 и L21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн).

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, создаваемого первой катушкой с числом витков N1, током I1 и магнитной проницаемостью m сердечника, согласно (119.2),  где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки

Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков,

Поток Y создается током I1, поэтому, согласно (128.1), получаем

  (128.3)

Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L12 получим выражение в соответствии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник,

Правило Ленца.

(куда течет индукционный ток)

Индукционный ток направлен так, чтобы своим потоком препятствовать изменению потока, который его создает.

Ф - растет.

Индуктивность.

 - индуктивность - статический коэффициент индукции [].

Индукция - характеристика проводника, зависит от его геометрических размеров. (Во сколько раз увеличивается ток, во столько увеличивается и поток.)

Явление самоиндукции.

Возникновение ЭДС в контуре при изменении силы тока в нем.

=

контур не меняется.

L - динамический коэффициент самоиндукции.

Вывод формулы индуктивности длинного соленоида.

Потокосцепление:  - поток, сцепленный со всей катушкой.

Пример 5. По тонкому проводящему кольцу радиусом R = 10 см течет ток I=80 А. Найти магнитную индукцию В в точке A, равно­удаленной от всех точек кольца на расстояние г=20 см.

Решение. Для решения задачи воспользуемся законом Био — Савара — Лапласа:

dB[dl,r],

где dB —магнитная индукция поля, создаваемого элементом тока Idl в точке, определяемой радиус-вектором r.

 

 Рис. 7

Выделим на кольце элемент dl и от него в точку А проведем радиус-вектор г (рис. 7). Вектор dB направим в соответствии с правилом буравчика.

  Согласно принципу суперпозиции магнитных полей, магнитная индукции В в точке А определяется интегралом

 

где интегрирование ведется по всем элементам dI кольца Разложим вектор  dB на две составляющие: dB┴ – перпендикулярную плоскости кольца и dB║ — параллельную плоскости кольца, т. е.

dB=dB^+dB½½. Тогда

Заметив, что из соображений симметрии и что векторы dB┴ от различных элементов dI сонаправлены, заменим векторное суммирование, заменим векторное суммирование (интегрирование) скалярным:

где ( поскольку dI перпендикулярен r и, следовательно, sin a=1). Таким образом,

После сокращения на 2π и замены cos β на R/r (рис. 7)

Выразим все величины в единицах СИ, произведем вычисления:

или

Вектор В направлен на оси кольца (пунктирная стрелка на рис. 7) в соответствии с правилом буравчика.


Явление электромагнитной индукции (опыты Фарадея)