Электрический ток Закон Ома Мощность, выделяемая в цепи переменного тока Электромагнетизм Закон Ампера Колебания и волны Электромагнитные волны Основные законы оптики Интерференция света

Лекции и задачи по физике Примеры решений контрольной работы

Намагниченность. Магнитное поле в веществе

Подобно тому, как для количественного описания поляризации диэлектриков вводилась поляризованность (см. § 88), для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнитным моментом единицы объема магнетика:

где  — магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул (см. (131.6)).

Рассматривая характеристики магнитного поля (см. § 109), мы вводили вектор магнитной индукции В, характеризующий результирующее магнитное поле, создаваемое всеми макро- и микротоками, и вектор напряженности Н, характеризующий магнитное поле макротоков. Следовательно, магнитное поле в веществе складывается из двух полей: внешнего поля, создаваемого током, и поля, создаваемого намагниченным веществом. Тогда можем записать, что вектор магнитной индукции результирующего магнитного ноля в магнетике равен векторной сумме магнитных индукций внешнего поля В0 (поля, создаваемого намагничивающим током в вакууме) и поля микротоков В' (поля, создаваемого молекулярными токами):

  (133.1)

где В0=m0Н (см. (109.3)).

Для описания поля, создаваемого молекулярными токами, рассмотрим магнетик в виде кругового цилиндра сечения S и длины l, внесенного в однородное внешнее магнитное поде с индукцией В0. Возникающее в магнетике магнитное поле молекулярных токов будет направлено противоположно внешнему полю для диамагнетиков и совпадать с ним по направлению для парамагнетиков. Плоскости всех молекулярных токов расположатся перпендикулярно вектору В0, так как векторы их магнитных моментов pm антипараллельны вектору В0 (для диамагнетиков) и параллельны В0 (для парамагнетиков). Если рассмотреть любое сечение цилиндра, перпендикулярное его оси, то во внутренних участках сечения магнетика молекулярные токи соседних атомов направлены навстречу друг другу и взаимно компенсируются (рис. 189). Нескомпенсированными будут лишь молекулярные токи, выходящие на боковую поверхность цилиндра.

Ток, текущий по боковой поверхности цилиндра, подобен току в соленоиде и создает внутри него поле, магнитную индукцию В' которого можно вычислить, учитывая формулу (119.2) для N = 1 (соленоид из одного витка):

  (133.2)

где I' — сила молекулярного тока, l — длина рассматриваемого цилиндра, а магнитная проницаемость m принята равной единице.

С другой стороны, I'/l — ток, приходящийся на единицу длины цилиндра, или его линейная плотность, поэтому магнитный момент этого тока p = I'lS/l = I'V/l, где V — объем магнетика. Если Р — магнитный момент магнетика объемом V, то намагниченность магнетика

  (133.3)

Сопоставляя (133.2) и (133.3), получим, что

или в векторной форме

Подставив выражения для В0 и В' в (133.1), получим

  (133.4)

или

 (133.5)

Как показывает опыт, в несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничение, т. е.

  (133.6)

где c — безразмерная величина, называемая магнитной восприимчивостью вещества. Для диамагнстихов c отрицательна (поле молекулярных токов противоположно внешнему), для парамагнетиков — положительна (поле молекулярных токов совпадает с внешним).

Используя формулу (133.6), выражение (133.4) можно записать в виде

 (133.7)

откуда

Безразмерная величина

 (133.8)

представляет собой магнитную проницаемость вещества. Подставив (133.8) в (133.7), придем к соотношению (109.3) В=m0mН, которое ранее постулировалось.

Так как абсолютное значение магнитной восприимчивости для диа- и парамагнетиков очень мало (порядка 10–4 —10–6), то для них m незначительно отличается от единицы. Это просто понять, так как магнитное поле молекулярных токов значительно слабее намагничивающего поля. Таким образом, для диамагнетиков c<0 и m<1, для парамагнетиков c>0 и m>1.

Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В) является обобщением закона (118.1):

где I и I' — соответственно алгебраические суммы макротоков (токов проводимости) и микротоков (молекулярных токов), охватываемых произвольным замкнутым контуром L. Таким образом, циркуляция вектора магнитной индукции В по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, таким образом, характеризует результирующее поле, созданное как макроскопическими токами в проводниках (токами проводимости), так и микроскопическими токами в магнетиках, поэтому линии вектора магнитной индукции В не имеют источников и являются замкнутыми.

Из теории известно, что циркуляция намагниченности J по произвольному замкнутому контуру L равна алгебраической сумме молекулярных токов, охватываемых этим контуром:

Тогда закон полного тока для магнитного поля в веществе можно записать также в виде

  (133.9)

где I, подчеркнем это еще раз, есть алгебраическая сумма токов проводимости.

Выражение, стоящее в скобках в (133.9), согласно (133.5), есть не что иное, как введенный ранее вектор H напряженности магнитного поля. Итак, циркуляция вектора Н по произвольному замкнутому контуру L равна алгебраической сумме токов проводимости, охватываемых этим контуром:

  (133.10)

Выражение (133.10) представляет собой теорему о циркуляции вектора Н.

Определим теперь магнитную индукцию поля витка с током в произвольной точке на оси витка, т. е. на прямой OO’, проходящей через центр витка перпендикулярно его плоскости. На рис. показан круговой виток радиуса R, плоскость которого перпендикулярна плоскости чертежа, а ось OO’ лежит в этой плоскости. В точке С на оси OO’ векторы

для полей различных малых элементов dl витка с током I не совпадают по направлению. Векторы  и  для полей двух диаметрально противоположных элементов витка  и , имеющих одинаковую длину (), равны по модулю: .

Результирующий вектор  направлен в точке С по оси OO’ витка, причем

= .

Вектор В индукции в точке С для магнитного поля всего витка направлен также вдоль оси OO’, а его модуль

.

Если воспользоваться понятием вектора  магнитного момента витка с током, то выражение можно переписать в форме:

 .

Пример 7. По двум параллельным прямым проводам длиной l=2,5 м каждый, находящимся на расстоянии d=20 см друг от дру­га, текут одинаковые токи I=1 кА. Вычислить силу F взаимодей­ствия токов.

Решение. Взаимодействие двух проводников, по которым текут токи, осуществляется через магнитное поле. Каждый ток соз­дает магнитное поле, которое действует на другой проводник. Пред­положим, что оба тока (обозначим их 1г и I2) текут в одном направ­лении.

Вычислим силу F1,2, с которой магнитное поле, созданное током I1, действует на проводник с током I2. Для этого проведем магнит­ную силовую линию так (штриховая линия на рис. 10), чтобы она касалась проводника с током I2. По касательной к силовой линии проведем вектор магнитной индукции В1. Модуль магнитной индук­ции B1 определяется соотношением

 (1)

Согласно закону Ампера, на каждый элемент второго проводника с током I2 длиной dl2 действует в магнитном поле сила

Так как отрезок dl перпендикулярен вектору B1, то

и тогда

 (2)

Подставив в выражение (2) В1 из (1), получим

Рис. 10

Силу F1,2 взаимодействия проводников с током найдем интегрированием по всей длине второго проводника;

Заметив, что I1=I2=I и l2=l, получим

Убедимся в том, что правая часть этого равенства дает единицу силы

 

Произведем вычисления:

 

Сила F1,2 сонаправлена с силой dF1,2 (рис. 10) и определяется (в данном случае это проще) правилом левой руки.


Явление электромагнитной индукции (опыты Фарадея)