Механика Закон сохранения импульса Молекулярная физика и термодинамика Реальные газы, жидкости и твердые тела Электростатика Типы диэлектриков. Поляризация диэлектриков

Лабораторные работы по физике. Курс по разделу механика

Вынужденные колебания и резонанс

 Если на тело с массой m действуют упругая сила Fу = -kX, сила трения и внешняя периодическая сила , то оно совершает вынужденные колебания. В этом случае дифференциальное уравнение движения имеет вид

 , или, (33)

где, - коэффициент затухания, - собственная частота свободных незатухающих колебаний тела, F0 – амплитуда, ω – частота периодической силы.

 В начальный момент времени работа внешней силы превосходит энергию, которая расходуется на трение (рис. 6). Энергия и амплитуда колебаний тела будет возрастать до тех

пор, пока вся сообщаемая внешней силой энергия не будет целиком расходоваться на преодоление трения, которое пропорционально скорости. Поэтому устанавливается равновесие, при котором сумма кинетической и потенциальной энергии оказывается постоянной. Это условие характеризует стационарное состояние системы.

 В таком состоянии движение тела будет гармоническим с частотой, равной частоте внешнего возбуждения, но вследствие инерции тела его колебания будут сдвинуты по фазе по отношению к мгновенному значению внешней периодической силы:

X = AСos(ωt + φ). (34)

 В отличие от свободных колебаний амплитуда А и фаза j вынужденных колебаний

зависят не от начальных условий движения, а будут определяться только свойствами колеблющейся системы, амплитудой и частотой вынуждающей силы:

 , (35)

 . (36)

 Видно, что амплитуда и сдвиг по фазе зависят от частоты вынуждающей силы (рис.7 и 8).

Характерной особенностью вынужденных колебаний является наличие резонанса. Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте свободных незатухающих колебаний тела ω0 носит название механического резонанса. Амплитуда колебаний тела при резонансной частоте  достигает максимального значения:


   (37)

 По поводу резонансных кривых (см. рис. 7) сделаем следующие замечания. Если ω→ 0, то все кривые (см. также (35)) приходят к одному и тому же, отличному от нуля, предельному значению , так называемому статистическому отклонению. Если ω→ ∞, то все кривые асимптотически стремятся к нулю.

 При условии малого затухания (β2 ‹‹ω02) резонансная амплитуда (см.(37))

  (37а)

 При этом условии возьмем отношение резонансного смещения к статическому отклонению.

,

из которого видно, что относительное увеличение амплитуды колебаний при резонансе определяется добротностью колебательной системы. Здесь добротность является по сути коэффициентом усиления отклика системы и при малом затухании может достигать больших значений.

  Это обстоятельство обусловливает огромное значение явления резонанса в физике и технике. Его используют, если хотят усилить колебания, например, в акустике – для усиления звучания музыкальных инструментов, в радиотехнике – для выделения нужного сигнала из множества других, отличающихся по частоте. Если резонанс может привести к нежелательному росту колебаний, пользуются системой с малой добротностью.

Связанные колебания Источником внешней периодической силы может служить вторая колебательная система, упруго связанная с первой. Обе колебательные системы могут действовать одна на другую

 Стоячие волны – это результат особого вида интерференции волн. Они образуются при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Определение характеристик затухания камертона Цель работы: изучить затухающие колебания и определить основные пареметры затухания камертона.


На главную